Post-mortem biometrics entails utilizing the biometric data of a deceased individual for determining or verifying human identity. Due to fundamental biological changes that occur in a person's biometric traits after death, post-mortem data can be significantly different from ante-mortem data, introducing new challenges for biometric sensors, feature extractors and matchers. This paper surveys research to date on the problem of using iris images acquired after death for automated human recognition. A comprehensive review of existing literature is complemented by a summary of the most recent results and observations offered in these publications. This survey is unique in several elements. Firstly, it is the first publication to consider iris recognition where gallery images are acquired before death (perimortem images) and the probe images are acquired after death from the same subjects. Secondly, results are presented from the largest database of peri-mortem and post-mortem iris images, collected from 213 subjects by two independent institutions located in the U.S. and Poland. Thirdly, post-mortem recognition viability is assessed using more than 20 iris recognition algorithms, ranging from the classic (e.g., Gabor filteringbased) to the modern (e.g., deep learning-based). Finally, we provide a medically informed commentary on post-mortem iris, analyze the reasons for recognition failures, and identify key directions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.