Inherent deficiencies of Leishmania in heme biosynthesis were genetically complemented for delta-aminolevulinate-inducible biosynthesis and accumulation of light-excitable uroporphyrin. The phototoxic flagellar immobilization and cytolysis phenotypes and porphyrin mobilization noted previously were further analyzed biochemically and cytologically to delineate the mechanism of phototoxicity and detoxification in this monoporphyric model. Under optimal conditions of induction for approximately 3 days, cells remained viable but became increasingly uroporphyric, peaking at >90% of the population by approximately day 2; thereafter, a small population of less porphyric or aporphyric cells emerged. On exposure to light, the flagella of porphyric cells were immobilized in milliseconds, and singlet oxygen became detectable in their lysates. Both photosensitive phenotypes increased proportionally with the cellular uroporphyric levels and were susceptible to inhibition by azide, but not by D-mannitol. Brief irradiation of the uroporphyric cells produced no appreciable protein degradation but inactivated cytosolic neomycin phosphotransferase and significantly bleached cytosolic green fluorescent protein, which was azide reversible. These cells were irreparably photodamaged, as indicated by their subsequent loss of membrane permeability and viability. This is the first in situ demonstration that early inactivation of functional proteins by singlet oxygen initiates the cytolytic phototoxicity in uroporphyria. Detoxification appears to involve endocytic/exocytic mobilization of uroporphyrin from cytosol to "porphyrinosomes" for its eventual extracellular expulsion. This is proposed as the sole mechanism of detoxification, since it is attributable to the reversion of porphyric to aporphyric cells during uroporphyrinogenesis and repeated cycles of this event plus photolysis selected no resistant mutants, only aporphyric clones of the parental phenotypes. Further characterization of the transport system for uroporphyrin in this model is expected to benefit not only our understanding of the cellular mechanism for disposal of toxic soluble wastes but also potentially the effective management of human uroporphyria and the use of uroporphyric Leishmania for vaccine/drug delivery.
Purpose
To analyze PASP in terms of its gene distribution and expression, its corneal pathologic effects, its enzymatic properties, and the protectiveness of the immune response to this protease.
Methods
Twenty-five strains of P. aeruginosa were analyzed for the PASP gene and secreted protein by PCR and Western blot analysis, respectively. Active recombinant (r)PASP (10 μg/20 μL) or heat-inactivated rPASP was intrastromally injected into rabbit corneas. Pathologic changes were monitored by slit lamp examination (SLE) and histopathology. Purified rPASP was assayed for cleavage of collagens and susceptibility to TLCK. Rabbit antibody to rPASP was produced and tested for enzyme inactivation, and actively immunized rabbits were challenged by intrastromal injection of active rPASP (5 μg).
Results
All 25 strains of P. aeruginosa analyzed were positive for the PASP gene and protein. SLE scores of eyes injected with active rPASP were significantly higher than control eyes at all postinjection times (PI; P ≤ 0.004). Histopathologic studies documented the destruction of the corneal epithelial layer and portions of the corneal stroma at 9 hours PI, and polymorphonuclear (PMN) leukocyte infiltration into the cornea by 24 hours after active rPASP injection. PASP cleaved type I and IV collagens and was susceptible to TLCK inhibition. PASP was present in the cytoplasm and periplasm, but only secreted PASP was enzymatically active. A high antibody titer (ELISA titer ≥ 10,000) was produced, but this antibody did not protect against active rPASP challenge.
Conclusions
PASP is a commonly produced Pseudomonas protease that can cleave collagens and cause corneal erosions.
The IL-22 signaling pathway is critical for regulating mucosal defense and limiting bacterial dissemination. IL-22 is unusual among interleukins because it does not directly regulate the function of conventional immune cells, but instead targets cells at outer body barriers, such as respiratory epithelial cells. Consequently, IL-22 signaling participates in the maintenance of the lung mucosal barrier by controlling cell proliferation and tissue repair, and enhancing the production of specific chemokines and anti-microbial peptides. Pseudomonas aeruginosa is a major pathogen of ventilator-associated pneumonia and causes considerable lung tissue damage. A feature underlying the pathogenicity of this bacterium is its capacity to persist and develop in the host, particularly in the clinical context of nosocomial lung infections. We aimed to investigate the ability of P. auruginosa to disrupt immune-epithelial cells cross-talk. We found that P. aeruginosa escapes the host mucosal defenses by degrading IL-22, leading to severe inhibition of IL-22-mediated immune responses. We demonstrated in vitro that, protease IV, a type 2 secretion system-dependent serine protease, is responsible for the degradation of IL-22 by P. aeruginosa. Moreover, the major anti-proteases molecules present in the lungs were unable to inhibit protease IV enzymatic activity. In addition, tracheal aspirates of patients infected by P. aeruginosa contain protease IV activity which further results in IL-22 degradation. This so far undescribed cleavage of IL-22 by a bacterial protease is likely to be an immune-evasion strategy that contributes to P. aeruginosa-triggered respiratory infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.