The surface of high-performance poly(ethylene terephthalate) (PET) fibers is difficult to wet and impossible to chemically bond to different matrices. Sizing applied on the fiber surface usually improves fiber wetting, but prevents good adhesion between a matrix and the fiber surface.The present study demonstrates that the plasma treatment performed by Surface dielectric barrier discharge (Surface DBD) can lead to improved adhesion between sized PET fabric and polyurethane (PU) or poly(vinyl chloride) (PVC) coatings. Moreover, it points out that this plasma treatment can outperform current state-of-the-art adhesion-promoting treatment.Plasma treatment of sized fabric was carried out in various gaseous atmospheres, namely N 2 , N 2 + H 2 O, N 2 + AAc (acrylic acid) and CO 2 . The adhesion was assessed by a peel test, while wettability was evaluated using strike-through time and wicking rate tests. Changes in fiber surface morphology and chemical composition were determined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Only the CO 2 plasma treatment resulted in improved adhesion. As indicated by the analyses, increased surface roughness and the incorporation of specific oxygen-containing groups were responsible for enhanced adhesion.The results presented were obtained using a plasma reactor suitable only for batch-wise treatment. As continuous treatment is expected to provide higher homogeneity and, therefore, even better adhesion, a scaled-up Surface DBD plasma system allowing continuous treatment is presented as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.