Enhanced 2,3-butanediol (BD) production was carried out by Klebsiella pneumoniae SDM. The nutritional requirements for BD production by K. pneumoniae SDM were optimized statistically in shake flask fermentations. Corn steep liquor powder and (NH(4))(2)HPO(4) were identified as the most significant factors by the two-level Plackett-Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform fed-batch fermentations with K. pneumoniae SDM. BD production was then studied in a 5-l bioreactor applying different fed-batch strategies, including pulse fed batch, constant feed rate fed batch, constant residual glucose concentration fed batch, and exponential fed batch. The maximum BD concentration of 150 g/l at 38 h with a diol productivity of 4.21 g/l h was obtained by the constant residual glucose concentration feeding strategy. To the best of our knowledge, these results were new records on BD fermentation.
Pseudomonas stutzeri SDM was newly isolated from soil, and two stereospecific NAD-independent lactate dehydrogenase (iLDH) activities were detected in membrane of the cells cultured in a medium containing DL-lactate as the sole carbon source. Neither enzyme activities was constitutive, but both of them might be induced by either enantiomer of lactate. P. stutzeri SDM preferred to utilize lactate to growth, when both L-lactate and glucose were available, and the consumption of glucose was observed only after lactate had been exhausted. The Michaelis-Menten constant for L-lactate was higher than that for D-lactate. The L-iLDH activity was more stable at 55 degrees C, while the D-iLDH activity was lost. Both enzymes exhibited different solubilization with different detergents and different oxidation rates with different electron acceptors. Combining activity staining and previous proteomic analysis, the results suggest that there are two separate enzymes in P. stutzeri SDM, which play an important role in converting lactate to pyruvate.
Corncob molasses, a waste by-product in xylitol production, contains high concentrations of mixed sugars. In the present study, corncob molasses was used to produce 2,3-butanediol (BD) using Klebsiella pneumoniae SDM. This was the first report on the use of corncob molasses to produce bulk chemicals. Our results indicated that K. pneumoniae SDM can utilize various sugars contained in the corncob molasses in a preferential manner: glucose > arabinose > xylose. It was shown that high sugars concentration had an inhibitory effect on the cells growth and BD production. The maximum concentration of BD was 78.9 g/l after 61 h of fed-batch fermentation, giving a BD productivity of 1.3 g/l h and a yield of 81.4%. The present study suggests that the low-cost corncob molasses could be used as an alternative substrate for the production of BD by K. pneumoniae SDM, as well as a potential carbon source for production of other high-value chemicals.
Background2,3-Butanediol (BD) is considered as one of the key platform chemicals used in a variety of industrial applications. It is crucial to find an efficient sugar-utilizing strain and feasible carbon source for the economical production of BD.Methodology/Principal FindingsEfficient BD production by a newly isolated Enterobacter cloacae subsp. dissolvens SDM was studied using crop-biomass cassava powder as substrate. The culture conditions and fermentation medium for BD production were optimized. Under the optimal conditions, 78.3 g l−1 of BD was produced after 24 h in simultaneous saccharification and fermentation (SSF), with a yield of 0.42 g BD g−1 cassava powder and a specific productivity of 3.3 g l−1 h−1. A higher BD concentration (93.9 g l−1) was produced after 47 h in fed-batch SSF.Conclusions/SignificanceThe results suggest that strain SDM is a good candidate for the BD production, and cassava powder could be used as an alternative substrate for the efficient production of BD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.