Enhanced 2,3-butanediol (BD) production was carried out by Klebsiella pneumoniae SDM. The nutritional requirements for BD production by K. pneumoniae SDM were optimized statistically in shake flask fermentations. Corn steep liquor powder and (NH(4))(2)HPO(4) were identified as the most significant factors by the two-level Plackett-Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform fed-batch fermentations with K. pneumoniae SDM. BD production was then studied in a 5-l bioreactor applying different fed-batch strategies, including pulse fed batch, constant feed rate fed batch, constant residual glucose concentration fed batch, and exponential fed batch. The maximum BD concentration of 150 g/l at 38 h with a diol productivity of 4.21 g/l h was obtained by the constant residual glucose concentration feeding strategy. To the best of our knowledge, these results were new records on BD fermentation.
The nutritional requirements for acetoin production by Bacillus subtilis CICC 10025 were optimized statistically in shake flask experiments using indigenous agroindustrial by-products. The medium components considered for initial screening in a Plackett-Burman design comprised a-molasses (molasses submitted to acidification pretreatment), soybean meal hydrolysate (SMH), KH(2)PO(4).3H(2)O, sodium acetate, MgSO(4).7H(2)O, FeCl(2), and MnCl(2), in which the first two were identified as significantly (at the 99% significant level) influencing acetoin production. Response surface methodology was applied to determine the mutual interactions between these two components and optimal levels for acetoin production. In flask fermentations, 37.9 g l(-1) acetoin was repeatedly achieved using the optimized concentrations of a-molasses and SMH [22.0% (v/v) and 27.8% (v/v), respectively]. a-Molasses and SMH were demonstrated to be more productive than pure sucrose and yeast extract plus peptone, respectively, in acetoin fermentation. In a 5-l fermenter, 35.4 g l(-1) of acetoin could be obtained after 56.4 h of cultivation. To our knowledge, these results, i.e., acetoin yields in flask or fermenter fermentations, were new records on acetoin fermentation by B. subtilis.
BackgroundThe high costs of pyridine nucleotide cofactors have limited the applications of NAD(P)-dependent oxidoreductases on an industrial scale. Although NAD(P)H regeneration systems have been widely studied, NAD(P)+ regeneration, which is required in reactions where the oxidized form of the cofactor is used, has been less well explored, particularly in whole-cell biocatalytic processes.Methodology/Principal FindingsSimultaneous overexpression of an NAD+ dependent enzyme and an NAD+ regenerating enzyme (H2O producing NADH oxidase from Lactobacillus brevis) in a whole-cell biocatalyst was studied for application in the NAD+-dependent oxidation system. The whole-cell biocatalyst with (2R,3R)-2,3-butanediol dehydrogenase as the catalyzing enzyme was used to produce (3R)-acetoin, (3S)-acetoin and (2S,3S)-2,3-butanediol.Conclusions/SignificanceA recombinant strain, in which an NAD+ regeneration enzyme was coexpressed, displayed significantly higher biocatalytic efficiency in terms of the production of chiral acetoin and (2S,3S)-2,3-butanediol. The application of this coexpression system to the production of other chiral chemicals could be extended by using different NAD(P)-dependent dehydrogenases that require NAD(P)+ for catalysis.
BackgroundThe demand for lactic acid has been increasing considerably because of its use as a monomer for the synthesis of polylactic acid (PLA), which is a promising and environment-friendly alternative to plastics derived from petrochemicals. Optically pure l-lactic acid is essential for polymerization of PLA. The high fermentation cost of l-lactic acid is another limitation for PLA polymers to compete with conventional plastics.Methodology/Principal FindingsA Bacillus sp. strain 2–6 for production of l-lactic acid was isolated at 55°C from soil samples. Its thermophilic characteristic made it a good lactic acid producer because optically pure l-lactic acid could be produced by this strain under open condition without sterilization. In 5-liter batch fermentation of Bacillus sp. 2–6, 118.0 g/liter of l-lactic acid with an optical purity of 99.4% was obtained from 121.3 g/liter of glucose. The yield was 97.3% and the average productivity was 4.37 g/liter/h. The maximum l-lactic acid concentration of 182.0 g/liter was obtained from 30-liter fed-batch fermentation with an average productivity of 3.03 g/liter/h and product optical purity of 99.4%.Conclusions/SignificanceWith the newly isolated Bacillus sp. strain 2–6, high concentration of optically pure l-lactic acid could be produced efficiently in open fermentation without sterilization, which would lead to a new cost-effective method for polymer-grade l-lactic acid production from renewable resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.