The nutritional requirements for acetoin production by Bacillus subtilis CICC 10025 were optimized statistically in shake flask experiments using indigenous agroindustrial by-products. The medium components considered for initial screening in a Plackett-Burman design comprised a-molasses (molasses submitted to acidification pretreatment), soybean meal hydrolysate (SMH), KH(2)PO(4).3H(2)O, sodium acetate, MgSO(4).7H(2)O, FeCl(2), and MnCl(2), in which the first two were identified as significantly (at the 99% significant level) influencing acetoin production. Response surface methodology was applied to determine the mutual interactions between these two components and optimal levels for acetoin production. In flask fermentations, 37.9 g l(-1) acetoin was repeatedly achieved using the optimized concentrations of a-molasses and SMH [22.0% (v/v) and 27.8% (v/v), respectively]. a-Molasses and SMH were demonstrated to be more productive than pure sucrose and yeast extract plus peptone, respectively, in acetoin fermentation. In a 5-l fermenter, 35.4 g l(-1) of acetoin could be obtained after 56.4 h of cultivation. To our knowledge, these results, i.e., acetoin yields in flask or fermenter fermentations, were new records on acetoin fermentation by B. subtilis.
2,3,5,6-Tetramethylpyrazine (TTMP) was produced using a newly isolated Bacillus mutant. Culture medium optimization studies showed that soytone, an enzyme-hydrolysate of soybean meal, with the supplementation of vitamins, can fully replace yeast extract plus peptone in supporting TTMP production from glucose. In a 5-l fermenter, using the optimized medium which contained 20% glucose, 5% soytone, 3% (NH(4))(2)HPO(4), and vitamin supplements, fermentations were carried out with stirring at 700 rpm, air flow at 1.0 vvm, controlled pH at 7.0, and temperature at 37 degrees C. TTMP reached 4.33 g l(-1) after 64.6 h cultivation. A product recovery method was described, which involved evaporation, crystallization, and lyophilization. The product purity was 99.88%, determined by GC with the normalization method. The main impurities were 2,3,5-trimethylpyrazine (0.09%) and 2-ethyl-3,5,6-trimethylpyrazine (0.02%), which were identified by GC/MS. (13)C NMR determination also gave a consistent result. Natural and high purity of the product and the utilization of cheap green renewable materials make this process promising to compete with TTMP chemical synthetic methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.