In this paper we study special properties of solutions of the initial value problem (IVP) associated to the Benjamin-Ono-Zakharov-Kuznetsov (BO-ZK) equation. We prove that if initial data has some prescribed regularity on the right hand side of the real line, then this regularity is propagated with infinite speed by the flow solution. In other words, the extra regularity on the data propagates in the solutions in the direction of the dispersion. The method of proof to obtain our result uses weighted energy estimates arguments combined with the smoothing properties of the solutions. Hence we need to have local well-posedness for the associated IVP via compactness method. In particular, we establish a local well-posedness in the usual L 2 (R 2)-based Sobolev spaces H s (R 2) for s > 5 4 which coincides with the best available result in the literature proved employing more complicated tools.
In this paper we prove the exponential decay of the energy for the high-order Kadomtsev-Petviashvili II equation with localized damping. To do that, we use the classical dissipation-observability method and a unique continuation principle introduced by Bourgain in [3] here extended for the highorder Kadomtsev-Petviashvili. A similar result is also obtained for the twodimensional Zakharov-Kuznetsov (ZK)equation. The method of proof works better for the ZK equation, so we were led to make some subtle modifications on it to include KP type equations. In fact, to reach a key estimate we use an anisotropic Gagliardo-Nirenberg inequality to drop the y-derivative of the norm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.