Retinal diseases, the leading causes of vison loss and blindness, are associated with complicated pathogeneses such as angiogenesis, inflammation, immune regulation, fibrous proliferation, and neurodegeneration. The retina is a complex tissue, where the various resident cell types communicate between themselves and with cells from the blood and immune systems. Exosomes, which are bilayer membrane vesicles with diameters of 30–150 nm, carry a variety of proteins, lipids, and nucleic acids, and participate in cell-to-cell communication. Recently, the roles of exosomes in pathophysiological process and their therapeutic potential have been emerging. Here, we critically review the roles of exosomes as possible intracellular mediators and discuss the possibility of using exosomes as therapeutic agents in retinal diseases.
Purpose: To compare the efficacy of a modified perfluorocarbon liquid–assisted inverted internal limiting membrane (ILM) flap technique with the standard ILM peeling for the treatment of macular hole retinal detachment in highly myopic eyes. Methods: This was a retrospective, consecutive, nonrandomized comparative study. Forty-two macular hole retinal detachment eyes of 42 patients were included into either a perfluorocarbon liquid–assisted inverted ILM flap technique group (n = 22, inverted group) or standard ILM removal group (n = 20, peeling group). Outcomes measured were macular hole closure, retinal reattachment, and best-corrected visual acuity at least 6 months after surgery. Results: Macular hole closure was achieved in 20 eyes (90.9%) in the inverted group and in eight eyes (40%) in the peeling group (P < 0.01). Reattachment rates were 100% in the inverted group and 95% in the peeling group (P = 0.476). The mean best-corrected visual acuity improvement from baseline was 27.4 ± 19.9 Early Treatment Diabetic Retinopathy Study letters in the inverted group while the best-corrected visual acuity improvement was 13.6 ± 22.5 Early Treatment Diabetic Retinopathy Study letters in the peeling group (P = 0.044). Conclusion: The perfluorocarbon liquid–assisted inverted ILM flap technique was effective in sealing the macular hole, reattaching retina, and improving visual function postoperatively in highly myopic macular hole retinal detachment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.