We report here the results of phylogenetic analysis of archaeal 16S rRNA gene sequences amplified by PCR with Archaea-specific primers with mixed-population DNA extracted directly from forest soil used as a template. Nucleotide signature and phylogenetic analyses show that the sequences obtained belong to the domain Archaea and form a new cluster. Its phylogenetic position suggests that sequences are from a previously undescribed terrestrial group within the kingdom Crenarchaeota.
We report here on novel groups of Archaea in the bacterioplankton of a small boreal forest lake studied by the culture-independent analysis of the 16S rRNA genes amplified directly from lake water in combination with fluorescent in situ hybridization (FISH). Polymerase chain reaction products were cloned and 28 of the 160 Archaea clones with around 900-bp-long 16S rRNA gene inserts, were sequenced. Phylogenetic analysis, including 642 Archaea sequences, confirmed that none of the freshwater clones were closely affiliated with known cultured Archaea. Twelve Archaea sequences from lake Valkea Kotinen (VAL) belonged to Group I of uncultivated Crenarchaeota and affiliated with environmental sequences from freshwater sediments, rice roots and soil as well as with sequences from an anaerobic digestor. Eight of the Crenarchaeota VAL clones formed a tight cluster. Sixteen sequences belonged to Euryarchaeota. Four of these formed a cluster together with environmental sequences from freshwater sediments and peat bogs within the order Methanomicrobiales. Five were affiliated with sequences from marine sediments situated close to marine Group II and three formed a novel cluster VAL III distantly related to the order Thermoplasmales. The remaining four clones formed a distinct clade within a phylogenetic radiation characterized by members of the orders Methanosarcinales and Methanomicrobiales on the same branch as rice cluster I, detected recently on rice roots and in anoxic bulk soil of flooded rice microcosms. FISH with specifically designed rRNA-targeted oligonucleotide probes revealed the presence of Methanomicrobiales in the studied lake. These observations indicate a new ecological niche for many novel 'non-extreme' environmental Archaea in the pelagic water of a boreal forest lake.
An anaerobic, 2,4,6-trichlorophenol ortho-dehalogenating mixed culture was enriched from sediment of the river Saale (Germany). Two isolated dechlorinating colonies (MK1 and MK2) consisted of rods of different lengths and thicknesses, indicating heterogeneity. Following subcultivation with thiosulfate as alternative electron acceptor and cocultivation with Clostridium celerecrescensT, the 2,4,6-trichlorophenol-dehalogenating bacterium Desulfitobacterium frappieri strain TCP-A was isolated and characterized regarding its taxonomic properties and the spectrum of chlorophenols that it dehalogenated. Four other bacterial strains were coenriched and identified as organisms with closest phylogenetic relatedness to the Clostridium type strains C. indolis, C. glycolicum, C. hydroxybenzoicum and C. sporosphaeroides (16S rDNA sequence identities of 99.5, 99.2, 94.4, and 93.5%, respectively). Amplified ribosomal DNA restriction analysis of the original dehalogenating cultures MK1 and MK2 (when not exposed to thiosulfate) confirmed the microbial heterogeneity and revealed the presence of two additional species related to the type strains of C. celerecrescens and Clostridium propionicum. Only one copy of the 16S rRNA genes of Desulfitobacterium frappieri in each of the clone libraries of MK1 and MK2 (containing 136 and 56 clones, respectively) was found by dot-blot hybridization, suggesting a relatively low number of the dehalogenating bacterium within the enrichment culture.
Archaea colonising defined compartments of Scots pine Suillus bovinus or Paxillus involutus mycorrhizospheres developed in forest humus-containing microcosms were investigated by nested polymerase chain reaction (PCR), cloning, restriction fragment length polymorphism (RFLP) and sequencing. Archaea representing six RFLP groups were detected in the system. Sequence analysis of clones representing the different RFLP types confirmed the presence of novel Finnish forest soil Crenarchaeota. Archaeal sequences were identified from mycorrhizas of both P. involutus and S. bovinus, at the margins of the external mycelium and in uncolonised humus but not from non-mycorrhizal short roots. Fungal and compartment-specific crenarchaeal occupation of mycorrhizospheres is discussed in relation to bacterial community distribution in similar systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.