Computed Tomography (CT) imaging is one of the conventional tools used to diagnose ischemic in Posterior Fossa (PF). Radiologist commonly diagnoses ischemic in PF through CT imaging manually. However, such a procedure could be strenuous and time consuming for large scale images, depending on the expertise and ischemic visibility. With the rapid development of computer technology, automatic image classification based on Machine Learning (ML) is widely been developed as a second opinion to the ischemic diagnosis. The practical performance of ML is challenged by the emergence of deep learning applications in healthcare. In this study, we evaluate the performance of deep transfer learning models of Convolutional Neural Network (CNN); VGG-16, GoogleNet and ResNet-50 to classify the normal and abnormal (ischemic) brain CT images of PF. This is the first study that intensively studies the application of deep transfer learning for automated ischemic classification in the posterior part of brain CT images. The experimental results show that ResNet-50 is capable to achieve the highest accuracy performance in comparison to other proposed models. Overall, this automatic classification provides a convenient and time-saving tool for improving medical diagnosis.
Kinect-based physical rehabilitation grows significantly as a mechanism for clinical assessment and rehabilitation due to its flexibility, low-cost and markerless system for human action capture. It is also an approach to provide convenience for for patients’ exercises continuation at home. In this paper, we discuss a review of the present Kinect-based physiotherapy and assessment for rehabilitation patients to provide an outline of the state of art, limitation and issues of concern as well as suggestion for future work in this approach. The paper is constructed into three main parts. The introduction was discussed on physiotherapy exercises and the limitation of current Kinect-based applications. Next, we also discuss on Kinect Skeleton Joint and Kinect Depth Map features that being used widely nowadays. A concise summary with significant findings of each paper had been tabulate for each feature; Skeleton Joints and Depth Map. Afterwards, we assemble a quite number of classification method that being implemented for activity recognition in past few years.
Nowadays, an automatic retinal vessels segmentation is important component in computer assisted system to detect numerous eye abnormalities. There are various sizes of the retinal blood vessels captured from fundus image modality, which can be detected by using multi-scale approach. However, the main limitation of the current multi-scale approaches is the inability to remove the optic disc from the detected blood vessels. In this paper, a hybrid of multi-scale detection with pre-processing approach is proposed so that clearer vessel segmentation can be obtained. The proposed method embedded with a pre-processing phase that includes four series of processes that include Top-hat transformation as the main part. This technique will reduce the influence of the structure of optic disc and enhance the contrast of the vessel from the background. Then, the result from the pre-processing phase will be fed to the multi-scale detection to perform the segmentation. The proposed method is evaluated on two publicly available online databases: HRF and DRIVE. On HRF database, the best obtained precision and specificity values are 0.9689 and 0.9989, respectively. Meanwhile, for DRIVE database, the system performs well in all performance measures: precision, specificity, accuracy and error with the best values of 0.7541, 0.9739, 0.9510 and 0.0490, respectively. In conclusion, the proposed method is able to filter the unwanted optical disc from the fundus image effectively. Thus, retinal blood vessel image can be used for further analysis process and beneficial for pre-screening system development.
<p>The rapid growth of technology makes it possible to implement in immediate diagnosis for patients using image processing. By using morphological processing and adaptive thresholding method for segmentation of optic disc and optic cup, various sizes of retinal fundus images captured through fundus camera from online databases can be processed. This paper explains the use of color channel separation method for pre-processing to remove noise for better optic disc and optic cup segmentation. Noise removal will improve image quality and in return help to increase segmentation standard. Then, morphological processing and adaptive thresholding method is used to extract out optic disc and optic cup from fundus image. The proposed method is tested on two publicly available online databases: RIM-ONE and DRIONS-DB. On RIM-ONE database, the average PSNR value acquired is 0.01891 and MSE is 65.62625. Meanwhile, for DRIONS-DB database, the best PSNR is 64.0928 and the MSE is 0.02647. In conclusion, the proposed method can successfully filter out any unwanted noise in the image and are able to help clearer optic disc and optic cup segmentation to be performed.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.