The rising cost and demand for energy have prompted the need to devise innovative methods for energy monitoring, control, and conservation. In addition, statistics show that 20% of energy losses are due to the mismanagement of energy. Therefore, the utilization of energy management can make a substantial contribution to reducing the unnecessary usage of energy consumption. In line with that, the intelligent control and optimization of energy management systems integrated with renewable energy resources and energy storage systems are required to increase building energy efficiency while considering the reduction in the cost of energy bills, dependability of the grid, and mitigating carbon emissions. Even though a variety of optimization and control tactics are being utilized to reduce energy consumption in buildings nowadays, several issues remain unsolved. Therefore, this paper presents a critical review of energy management in commercial buildings and a comparative discussion to improve building energy efficiency using both active and passive solutions, which could lead to net-zero energy buildings. This work also explores different optimum energy management controller objectives and constraints concerning user comfort, energy policy, data privacy, and security. In addition, the review depicts prospective future trends and issues for developing an effective building energy management system, which may play an unavoidable part in fulfilling the United Nations Sustainable Development Goals.
In this article, the optimal sizing of hybrid solar photovoltaic and battery energy storage systems is evaluated with respect to rooftop space and feed-in tariff rates. The battery scheduling is performed using a proposed rule-based energy management strategy. The rules are formulated based on the demand limit, PV export power limit, and state of charge of the battery. Furthermore, optimization modeling with initial choices of parameters and constraints in terms of solar photovoltaic and battery energy storage capabilities is developed to minimize the total net present cost. The hourly values of solar irradiance, air temperature, electrical loads, and electricity rates are considered the inputs of the optimization process. The optimization results are achieved using particle swarm optimization and validated through an uncertainty analysis. It is observed that an optimal photovoltaic and battery energy storage system can reduce the cost of electricity by 12.33%, including the sale of 5944.029 kWh of electricity to the grid. Furthermore, energy consumption, peak demand, and greenhouse gas emissions are reduced by 13.71%, 5.85%, and 62.59%, respectively. A comprehensive analysis between the variable and fixed data for the load, energy from PV, batteries, and the grid, and costs demonstrates that the optimal sizing of photovoltaic and battery energy storage systems with the best mix of energy from PV, batteries, and the grid provides the optimal solution for the proposed configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.