DNAzymes (synthetic catalytic DNA) have emerged as a new class of nucleic acid-based gene silencing agent. Using DNAzymes targeting the human mRNA of the immediate-early gene and C2H2-class zinc finger transcription factor early growth response-1 (EGR-1), we demonstrate here that EGR-1 plays an indispensable role in breast cancer proliferation, migration, chemoinvasion and xenograft growth in nude mice. DNAzyme inhibition of these tumorigenic processes and EGR-1 protein expression in breast carcinoma cells is sequence-specific and EGR-1 transcription-independent. These agents inhibit breast carcinoma cell migration and chemoinvasion in microchemotaxis chambers and solid tumour growth in athymic nude mice. Thus, DNAzymes targeting specific genes can inhibit multiple key tumorigenic processes in vitro and in vivo and may serve as useful anti-cancer agents.
Conventional anti-inflammatory strategies induce multiple side effects, highlighting the need for novel targeted therapies. Here we show that knockdown of the basic-region leucine zipper protein, c-Jun, by a catalytic DNA molecule, Dz13, suppresses vascular permeability and transendothelial emigration of leukocytes in murine models of vascular permeability, inflammation, acute inflammation and rheumatoid arthritis. Treatment with Dz13 reduced vascular permeability due to cutaneous anaphylactic challenge or VEGF administration in mice. Dz13 also abrogated monocyte-endothelial cell adhesion in vitro and abolished leukocyte rolling, adhesion and extravasation in a rat model of inflammation. Dz13 suppressed neutrophil infiltration in the lungs of mice challenged with endotoxin, a model of acute inflammation. Finally, Dz13 reduced joint swelling, inflammatory cell infiltration and bone erosion in a mouse model of rheumatoid arthritis. Mechanistic studies showed that Dz13 blocks cytokine-inducible endothelial c-Jun, E-selectin, ICAM-1, VCAM-1 and VE-cadherin expression but has no effect on JAM-1, PECAM-1, p-JNK-1 or c-Fos. These findings implicate c-Jun as a useful target for anti-inflammatory therapies.
Leukocyte immunoglobulin-like receptor A5 (LILRA5) belongs to a family of receptors known to regulate leukocyte activation. There are two membrane-bound and two soluble forms of LILRA5. The transmembrane LILRA5 contain a short cytoplasmic domain and a charged arginine residue within the transmembrane region. Cross-linking of LILRA5 on monocytes induced production of pro-inflammatory cytokines, suggesting that LILRA5 plays a role in inflammation. However, expression of LILRA5 in diseases with extensive inflammatory component is unknown. Rheumatoid arthritis (RA) is a chronic inflammatory synovitis characterized by unregulated activation of leukocytes leading to joint destruction. Here we demonstrate extensive LILRA5 expression on synovial tissue macrophages and in synovial fluid of patients with active RA but not in patients with osteoarthritis. We also show that LILRA5 associated with the common c chain of the FcR and LILRA5 cross-linking induced phosphorylation of Src tyrosine kinases and Spleen tyrosine kinase (Syk). Furthermore, LILRA5 induced selective production of pro-inflammatory cytokines as well as IL-10. LILRA5 mRNA and protein expression was tightly regulated by TNF-a, IL-10 and IFN-c. Increased expression of LILRA5 in rheumatoid tissue, together with its ability to induce key cytokines involved in RA, suggests that this novel receptor may contribute to disease pathogenesis.
Background: LILRA3 is a soluble receptor with unknown functions that is abundantly present in human serum. Results: Optimally glycosylated recombinant LILRA3 protein produced only in a mammalian system binds potential ligands and suppresses monocyte function. Conclusion: LILRA3 suppresses LPS-mediated TNF production, suggesting that it is a new anti-inflammatory protein.Significance: This work provides first insight into the biochemical characteristics and functions of LILRA3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.