Abstract:The magnetohydrodynamic thin film nanofluid sprayed on a stretching cylinder with heat transfer is explored. The spray rate is a function of film size. Constant reference temperature is used for the motion past an expanding cylinder. The sundry behavior of the magnetic nano liquid thin film is carefully noticed which results in to bring changes in the flow pattern and heat transfer. Water-based nanofluids like Al 2 O 3 -H 2 O and CuO-H 2 O are investigated under the consideration of thin film. The basic constitutive equations for the motion and transfer of heat of the nanofluid with the boundary conditions have been converted to nonlinear coupled differential equations with physical conditions by employing appropriate similarity transformations. The modeled equations have been computed by using HAM (Homotopy Analysis Method) and lead to detailed expressions for the velocity profile and temperature distribution. The pressure distribution and spray rate are also calculated. The comparison of HAM solution predicts the close agreement with the numerical method solution. The residual errors show the authentication of the present work. The CuO-H 2 O nanofluid results from this study are compared with the experimental results reported in the literature showing high accuracy especially, in investigating skin friction coefficient and Nusselt number. The present work discusses the salient features of all the indispensable parameters of spray rate, velocity profile, temperature and pressure distributions which have been displayed graphically and illustrated.
Recent research has reported on the energy and mass transition caused by Casson hybrid nanofluid flow across an extended stretching sheet. Thermal and velocity slip conditions, heat absorption, viscous dissipation, thermal radiation, the Darcy effect, and thermophoresis diffusion have all been considered in the study of fluid flow. Fluid flow is subjected to an angled magnetic field to control the flow stream. Cu and Al 2 O 3 NPs are dispensed into the Casson fluid to create a hybrid nanofluid (blood). The suggested model of flow dynamics is an evolving nonlinear system of PDEs, which is then reduced to a system of dimensionless ODEs using similarity proxies. The resulting set of ODEs is solved using the analytical program "HAM" for further processing. However, it has been found that the effects of the suction parameter and Darcy Forchhemier considerably reduced the energy transference rate of hybrid nanoliquids. It has been discovered that the effects of thermal radiation and heat absorption increase the energy transfer rate. Furthermore, the velocity and energy transmission rate are noticeably amplified by the dispersion of copper and cobalt ferrite nanoparticles in the base fluid.
This paper introduces a mathematical model of a convection flow of magnetohydrodynamic (MHD) nanofluid in a channel embedded in a porous medium. The flow along the walls, characterized by a non-uniform temperature, is under the effect of the uniform magnetic field acting transversely to the flow direction. The walls of the channel are permeable. The flow is due to convection combined with uniform suction/injection at the boundary. The model is formulated in terms of unsteady, one-dimensional partial differential equations (PDEs) with imposed physical conditions. The cluster effect of nanoparticles is demonstrated in the C 2 H 6 O 2 , and H 2 O base fluids. The perturbation technique is used to obtain a closed-form solution for the velocity and temperature distributions. Based on numerical experiments, it is concluded that both the velocity and temperature profiles are significantly affected by φ. Moreover, the magnetic parameter retards the nanofluid motion whereas porosity accelerates it. Each H 2 O-based and C 2 H 6 O 2 -based nanofluid in the suction case have a higher magnitude of velocity as compared to the injections case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.