This comparative research investigates the influence of a flexible magnetic flux and a chemical change on the freely fluid motion of a (MHD) magneto hydrodynamic boundary layer incompressible nanofluid across an exponentially expanding sheet. Water and ethanol are used for this analysis. The temperature transmission improvement of fluids is described using the Buongiorno model, which includes Brownian movement and thermophoretic distribution. The nonlinear partial differential equalities governing the boundary layer were changed to a set of standard nonlinear differential equalities utilizing certain appropriate similarity transformations. The bvp4c algorithm is then used to tackle the transformed equations numerically. Fluid motion is slowed by the magnetic field, but it is sped up by thermal and mass buoyancy forces and thermophoretic distribution increases non-dimensional fluid temperature resulting in higher temperature and thicker boundary layers. Temperature and concentration, on the other hand, have the same trend in terms of the concentration exponent, Brownian motion constraint, and chemical reaction constraint. Furthermore, The occurrence of a magnetic field, which is aided by thermal and mass buoyancies, assists in the enhancement of heat transmission and wall shear stress, whereas a smaller concentration boundary layer is produced by a first-order chemical reaction and a lower Schmidt number.
A time-dependent convectional flow of a two-phase nanofluid over a rotating cone with the impact of heat and mass rates is elaborated in this article. The instability in the flow field is induced by the cone angular velocity that depends on the time. The Navier–Stokes self-similar solution and the energy equations are obtained numerically. Here, the achieved solution is not only for Navier–Stokes equations but also for the equations of the boundary layers. In this work, the concentration, Brownian motion, and thermal buoyancy effects have important significance. We have assumed viscous dissipation with heat-absorbing fluid. Similarity answers for spinning cones with divider temperature boundary conditions give an arrangement of nonlinear differential conditions that have been handled numerically. The MATLAB methodology BVP4C is used to resolve the reduced structure of nonlinear differential equations numerically. Observation for skin friction and Nusselt number is also taken into account. Velocity and temperature impact is depicted graphically, while the outward shear stress values and heat allocation rate are included in tables.
The fundamental purpose of this research is to elaborate on slip boundary conditions and the flow of three-dimensional, stable, incompressible, rotating movements of nanoparticles lying across a stretchable sheet. The mathematical model for fluid flow is created using the assumptions stated above. The partial differentials are produced after utilizing boundary layer estimates. The partial differential governing equations are reduced into three coupled ordinary differential equations by using similarity transformations. After, applying transformations the system is solved numerically. Numerical results are approved with the help of the MATLAB bvp4c algorithm. The analysis shows that velocity and temperature are strongly dependent on essential parameters like stretching ratio, velocity slip, rotation, thermal slip parameter, and Prandtl number. Numerical values of distinct parameters on heat flux and skin friction factors are shown in a tabulated form. Partial velocity and thermal slip are applied to the temperature surface. The comparison among the nano-sized particles copper oxide and silver with water base nanofluid affecting velocity and temperature fields are used for analysis. Moreover, the Graphical depiction designates that the velocity and temperature spreading of the thermal slip parameter is increasing. It is observed that Ag-water is the best heat carrier as compared to CuO-water nanofluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.