In the current era, the Transdermal delivery of bioactive molecules has become an area of research interest. The transdermal route of administration enables direct entry of bioactive molecules into the systemic circulation with better and easy accessibility, bypassing the hepatic metabolism and improving patient compliance. Permeation through the skin has always been a barrier. To overcome this challenge, an efficient route by the vesicular system has been adopted so as to have better skin permeation of the bioactive molecules. A novel vesicular and non-invasive drug delivery system called Nanoethosomes was developed. Nanoethosomes are lipid-based vesicular carriers that are used for deeper permeation of the bioactive agents into the skin. The main components of Nanoethosomes are Phospholipids, water, and ethanol. High ethanol concentration in Nanoethosomes distinguishes them from other nano-formulation and results in deeper permeation and smaller vesicular size. This review article gives detailed information on the formulation techniques, and characterization parameters of nanoethosomes along with the research work done by various researchers in the same field. The compiled manuscript gives detailed elaboration about the various drugs used to treat different diseases which when incorporated in nanoethosomes resulted in better permeability and enhanced bioavailability.
Nanourchins are multibranched nanoparticles with unique optical properties and surface spikes. Because of their unique properties, gold nanourchins have advantages over gold nanoparticles. The most used nanourchins are gold, tungsten, carbon, vanadium and sea urchins. The synthesis of various nanourchins and their clinical advancement are discussed in this review. ZFNs, TALENs and CRISPR/Cas9 are discussed to facilitate understanding of advancements in nanourchins. Nanourchins have been studied for Parkinson's disease, Alzheimer's disease and bioimaging. The synthesis of molybdenum diselenide nanourchins and their bioconjugations are also discussed. Nanourchins can be further explored to improve drug targeting and delivery. Researchers from several fields may contribute to the study of nanourchins as prospective nanocarriers with target specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.