In recent years a negative influence of diatom-derived alpha,beta,gamma,delta-unsaturated aldehydes (PUA) on the reproductive success of copepods and invertebrates has been suggested. Since adverse chemical properties of diatoms would question the traditional view of the marine food web, this defense mechanism has been investigated in detail, but the PUA-release by test organisms has only been determined in a few cases. The observed effects were nevertheless frequently discussed from a general point of view often leading to contradictory conclusions. We have examined the PUA-production of 51 diatom species (71 isolates) in order to provide a basis for the interpretation of laboratory and field results on the influence of diatom food on the reproductive success of their consumers. PUA-production is species and strain dependent. Thirty-six percent of the investigated species (38% of the cultivated isolates) release alpha,beta,gamma,delta-unsaturated aldehydes upon cell disruption in concentrations from 0.01 to 9.8 fmol per cell. Thalassiosira rotula and Thalassiosira pacifica, major spring-bloom forming diatoms isolated from Roscoff (Bretagne, English Channel, France) and Puget Sound (Washington, USA) were among the PUA-producing strains.
which increased the taxonomic assignment success from 23.7 to 50.5 %. When the communities were studied along with environmental variables, similar spatial and temporal trends of taxonomic diversity were observed for metabarcoding and microscopic studies of zooplankton, but not for phytoplankton. This is most likely attributable to the lack of representative sequences for phytoplankton species in current databases. In addition, there was high correspondence in community composition when comparing abundances estimated from metabarcoding and microscopy, suggesting semiquantitative potential for metabarcoding. Furthermore, metabarcoding allowed the detection and identification of two non-indigenous species (NIS) found in the study area at abundances hardly detectable by microscopy. Overall, our results indicate that metabarcoding is a powerful approach with excellent possibilities for use in plankton monitoring, early detection of NIS and plankton biodiversity shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.