Raman spectroscopy is an indispensable method for the nondestructive testing of semiconductor materials and their microstructures. This paper presents a study on the angle-resolved intensity of polarized micro-Raman spectroscopy for a 4H silicon carbide (4H-SiC) wafer. A generalized theoretical model of polarized Raman intensity was established by considering the birefringence effect. The distributions of angle-resolved Raman intensities were achieved under normal and oblique backscattering configurations. Experiments were performed on a self-built angle-resolved Raman system, which verified the validity of the proposed model and achieved the identification of crystal orientations of the 4H-SiC sample.
In this paper, magnetically tunable random lasing from a polymer dispersed liquid crystal (PDLC) in a capillary was achieved by means of doping with magnetic nanoparticles (MNPs). We experimentally explored the effects of the concentration of MNPs and the amplitude and direction of the magnetic field on the emission properties of random lasing, such as threshold, envelope of the emission spectrum, and intensities. The related mechanism was also investigated theoretically. Experimental results also showed that weakly tuned effects appeared from the sample with a polymer or pure liquid crystal (LC) doped with MNPs in comparison with PDLCs. Our research would provide an additional way to achieve tunable compact LC-based lasers.
Monocrystalline silicon (c-Si) is still an important material related to microelectronics/optoelectronics. The nondestructive measurement of the c-Si material and its microstructure is commonly required in scientific research and industrial applications, for which Raman spectroscopy is an indispensable method. However, Raman measurements based on the specific fixed Raman geometry/polarization configuration are limited for the quantified analysis of c-Si performance, which makes it difficult to meet the high-end requirements of advanced silicon-based microelectronics and optoelectronics. Angle-resolved Raman measurements have become a new trend of experimental analysis in the field of materials, physics, mechanics, and optics. In this paper, the characteristics of the angle-resolved polarized Raman scattering of c-Si under the in-axis and off-axis configurations are systematically analyzed. A general theoretical model of the angle-resolved Raman intensity is established, which includes several alterable angle parameters, including the inclination angle, rotation angle of the sample, and polarization directions of the incident laser and scattered light. The diversification of the Raman intensity is given at different angles for various geometries and polarization configurations. The theoretical model is verified and calibrated by typical experiments. In addition, this work provides a reliable basis for the analysis of complex polarized Raman experiments on silicon-based structures.
Residual stress introduced during electronic packaging is one of the core factors affecting the efficiency, quality and reliability of advanced semiconductor devices. Therefore, it is important to reduce negative effect, even to increase positive influence through regulating the magnitude and distribution of residual stress on semiconductor devices, requiring a non-destructive, non-contact and automatic on-line method for the measurement of the surface and internal residual stress. This paper presented an angle-resolved Micro-Raman method for the measurement of the residual stress induced by electronic packaging of semiconductor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.