Vibrational relaxation times of oxygen (O2) were measured behind reflected shocks in shock-tube experiments with O2 and nitrogen (N2) collision partners. To determine relaxation times, a tunable ultraviolet laser absorption diagnostic probed time-histories involving the fourth (v″ = 4), fifth (v″ = 5), and sixth (v″ = 6) vibrational levels of the ground electronic state of O2. Taking the ratio of two absorbance time-histories involving different vibrational levels yielded vibrational temperature time-histories that were fit to isolate the relevant vibrational relaxation times. Pure O2 experiments were used to isolate the vibration–translation (VT) relaxation time of O2 with O2. Results for τVTO2–O2 agree with the Millikan and White correlation at temperatures below 4000 K. However, high-temperature data deviate from the Millikan and White correlation, exhibiting a reduced temperature dependence—an observation that remains consistent with previous experimental studies. Additional experiments in 10% and 21% O2 in N2 mixtures were used to isolate both the VT and vibration–vibration (VV) relaxation times of O2 with N2. The data for τVTO2–N2 exceed the Millikan and White correlation by 70% but show reasonable agreement with previous data below 5000 K. High-temperature results again show a reduced temperature dependence, but this study shows longer relaxation times than the previous work. The data for τVVO2–N2 exceed the semi-empirical relation developed by Berend et al. [“Vibration-vibration energy exchange in N2 with O2 and HCl collision partners,” J. Chem. Phys. 57, 3601–3604 (1972)] by 70% but overlap with previous measurements. Due to insensitivity of the chemical system to VV transfer at high temperatures, results for τVVO2–N2 were only measured below 6000 K.
Validation of high-fidelity models for high-temperature hypersonic flows requires high-accuracy kinetics data for oxygen (O2) reactions, including time-histories and rate parameter measurements. Consequently, shock-tube experiments with ultraviolet (UV) laser absorption were performed to measure quantum-state-specific time-histories and coupled vibration-dissociation (CVDV) rate parameters in shock-heated, nondilute O2 and oxygen–argon (O2–Ar) mixtures. Experiments probed mixtures of 20% O2–Ar, 50% O2–Ar, and 100% O2 for initial post-reflected-shock conditions from 6000 to 14 000 K and 26–210 Torr. Two UV lasers—one continuous-wave laser and one pulsed laser—measured absorbance time-histories from the fifth and sixth vibrational levels of the electronic ground state of O2, respectively. The absorbance time-histories subsequently yielded time-histories for vibrational temperature (Tv) from the absorbance ratio, translational/rotational temperature (Ttr) from energy conservation, total O2 number density (nO2) from the individual absorbances, and vibrational-state-specific number density (nv″) from the Boltzmann population fractions. These state-specific temperature and number density time-histories demonstrate the low uncertainty necessary for high-temperature model validation and provide data to higher temperature than previous experiments. Additional analysis of the temperature and number density time-histories allowed inference of rate parameters in the Marrone and Treanor CVDV model, including vibrational relaxation time (τO2−O2), average vibrational energy loss (ε), vibrational coupling factor (Z), and dissociation rate constants (kdO2−O2 and kdO2−O). The results for each of these five parameters show reasonable consistency across the range of temperatures, pressures, and mixtures and generally agree with a modified Marrone and Treanor model by Chaudhry et al. [“Implementation of a chemical kinetics model for hypersonic flows in air for high-performance CFD,” in Proceedings of AIAA Scitech Forum (2020)]. Finally, the results for τO2−O2, kdO2−O2, and kdO2−O exhibit much lower scatter than previous experimental studies.
Shock-tube experiments were conducted behind reflected shocks using ultraviolet (UV) laser absorption to measure coupled vibration–dissociation (CVDV) time-histories and rate parameters in dilute mixtures of oxygen (O2) and argon (Ar). Experiments probed 2% and 5% O2 in Ar mixtures for initial post-reflected-shock conditions from 5000 K to 10 000 K and 0.04 atm to 0.45 atm. A tunable, pulsed UV laser absorption diagnostic measured absorbance time-histories from the fourth, fifth, and sixth vibrational levels of the electronic ground state of O2, and experiments were repeated—with closely matched temperature and pressure conditions—to probe absorbance time-histories corresponding to each vibrational level. The absorbance ratio from two vibrational levels, interpreted via an experimentally validated spectroscopic model, determined vibrational temperature time-histories. In contrast, the absorbance involving a single vibrational level determined vibrational-state-specific number density time-histories. These temperature and state-specific number density time-histories agree reasonably well with state-to-state modeling at low temperatures but deviate significantly at high temperatures. Further analysis of the vibrational temperature and number density time-histories isolated coupling parameters from the Marrone and Treanor CVDV model, including vibrational relaxation time (τ), average vibrational energy loss (ε), vibrational coupling factor (Z), and dissociation rate constant (kd). The results for τ and kd are consistent with previous results, exhibit low scatter, and—in the case of vibrational relaxation time—extend measurements to higher temperatures than previous experiments. The results for ε and Z overlap some common models, exhibit relatively low scatter, and provide novel experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.