Abstract:The Garhwal Himalaya has experienced extensive deforestation and forest fragmentation, but data and documentation detailing this transformation of the Himalaya are limited. The aim of this study is to analyse the observed changes in land cover and forest fragmentation that occurred between 1976 and 2014 in the Garhwal Himalayan region in India. Three images from Landsat 2 Multispectral Scanner System (MSS), Landsat 5 Thematic Mapper (TM), and Landsat 8 Operational Land Imager (OLI) were used to extract the land cover maps. A cross-tabulation detection method in the geographic information system (GIS) module was used to detect land cover changes during the 1st period (1976-1998) and 2nd period (1998-2014). The landscape fragmentation tool LFT v2.0 was used to construct a forest fragmentation map and analyse the forest fragmentation pattern and change during the 1st period and 2nd period (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014). The overall annual rate of change in the forest cover was observed to be 0.22% and 0.27% in the 1st period and 2nd period (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014), respectively. The forest fragmentation analysis shows that a large core forest has decreased throughout the study period. The total area of forest patches also increased from 1976 to 2014, which are completely degraded forests. The results indicate that anthropogenic activities are the main causes of the loss of forest cover and forest fragmentation, but that natural factors also contributed. An increase in the area of scrub and barren land also contributed to the accumulation of wasteland or non-forest land in this region. Determining the trend and the rate of land cover conversion is necessary for development planners to establish a rational land use policy.
Flood is a major environmental problem in India as it has devastating effects on life and property. The objective of present study is to delineate and identify flood hazard and risk assessment at landscape level using Landsat satellite data from 1974-2013 in Chamoli District, Uttarakhand, India covering total geographical area of 8030 km2. The study area lies between 30-31° N latitude and 79-80° E longitude. The satellite data was ortho-rectified and the study area was extracted using district boundary. The vegetation type/land use map was prepared using on-screen visual interpretation technique. The multi-flood time series dataset was used for preparation of Digital Elevation Model. Geographical Information System was used for identification of flood prone areas which were classified with zone-wise. A flood frequency map was developed using the multi-date Landsat satellite imagery. The classified vegetation type/land use map from 1974-2013 was overlaid to find out the frequency of the flood. Flood affected areas were classified into very low, low, medium, high, very high and extremely high based on vulnerability to the potential of flood hazard. The areas were further categorized, based on the vulnerability of flood viz; extremely high (6) very high (5), high (4), medium (3), low (2) and very low (1) respectively. The study assigned the scores to each class for further determination of risk zone in various thematic layers such as slope, aspect and elevation. The incorporation of all thematic layers and flood frequency map was generated to prepare flood hazard and risk map using GIS platform. Flood frequency and flood prone areas were calculated using DEM. The vegetation type/land use map was integrated for creation of flood hazard and risk assessment. Based on this analysis the flood risk zones at different levels and intensity in the Chamoli district were prepared. This flood hazard and risk assessment maps will be useful to management and mitigate losses of lives and property from recurrent flood disasters in Chamoli District. This model can also be applied to comparable areas in Himalayas.
The coal mining industry in Assam was started by the British in 1884. Coal mining activities are considered hazardous to the sustenance of biodiversity of the region, which is under Eastern Himalayan province, the richest bio-geographical province of the Himalayan zone and also falls in one of the mega biodiversity hotspots of the world. Makum Coalfield of North Eastern Coalfields in Margherita of Tinsukia district of Assam was surveyed and lichen diversity of different sites was studied. Sites with active mining had very low diversity of lichens. Reclamation sites have an intermediate number of lichen species; rocks were under the process of lichenization. Reserve forests near the mining sites had maximum lichen diversity; understorey plants were abundant with follicolous lichens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.