Abstract:The Garhwal Himalaya has experienced extensive deforestation and forest fragmentation, but data and documentation detailing this transformation of the Himalaya are limited. The aim of this study is to analyse the observed changes in land cover and forest fragmentation that occurred between 1976 and 2014 in the Garhwal Himalayan region in India. Three images from Landsat 2 Multispectral Scanner System (MSS), Landsat 5 Thematic Mapper (TM), and Landsat 8 Operational Land Imager (OLI) were used to extract the land cover maps. A cross-tabulation detection method in the geographic information system (GIS) module was used to detect land cover changes during the 1st period (1976-1998) and 2nd period (1998-2014). The landscape fragmentation tool LFT v2.0 was used to construct a forest fragmentation map and analyse the forest fragmentation pattern and change during the 1st period and 2nd period (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014). The overall annual rate of change in the forest cover was observed to be 0.22% and 0.27% in the 1st period and 2nd period (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014), respectively. The forest fragmentation analysis shows that a large core forest has decreased throughout the study period. The total area of forest patches also increased from 1976 to 2014, which are completely degraded forests. The results indicate that anthropogenic activities are the main causes of the loss of forest cover and forest fragmentation, but that natural factors also contributed. An increase in the area of scrub and barren land also contributed to the accumulation of wasteland or non-forest land in this region. Determining the trend and the rate of land cover conversion is necessary for development planners to establish a rational land use policy.
The Himalayan region and hilly areas face severe challenges due to landslide occurrences during the rainy seasons in India, and the study area, i.e., the Rudraprayag district, is no exception. However, the landslide related database and research are still inadequate in these landslide-prone areas. The main purpose of this study is: (1) to prepare the multi-temporal landslide inventory map using geospatial platforms in the data-scarce environment; (2) to evaluate the landslide susceptibility map using weights of evidence (WoE) method in the Geographical Information System (GIS) environment at the district level; and (3) to provide a comprehensive understanding of recent developments, gaps, and future directions related to landslide inventory, susceptibility mapping, and risk assessment in the Indian context. Firstly, 293 landslides polygon were manually digitized using the BHUVAN (Indian earth observation visualization) and Google Earth® from 2011 to 2013. Secondly, a total of 14 landslide causative factors viz. geology, geomorphology, soil type, soil depth, slope angle, slope aspect, relative relief, distance to faults, distance to thrusts, distance to lineaments, distance to streams, distance to roads, land use/cover, and altitude zones were selected based on the previous study. Then, the WoE method was applied to assign the weights for each class of causative factors to obtain a landslide susceptibility map. Afterward, the final landslide susceptibility map was divided into five susceptibility classes (very high, high, medium, low, and very low classes). Later, the validation of the landslide susceptibility map was checked against randomly selected landslides using IDRISI SELVA 17.0 software. Our study results show that medium to very high landslide susceptibilities had occurred in the non-forest areas, mainly scrubland, pastureland, and barren land. The results show that medium to very high landslide susceptibilities areas are in the upper catchment areas of the Mandakini river and adjacent to the National Highways (107 and 07). The results also show that landslide susceptibility is high in high relative relief areas and shallow soil, near thrusts and faults, and on southeast, south, and west-facing steep slopes. The WoE method achieved a prediction accuracy of 85.7%, indicating good accuracy of the model. Thus, this landslide susceptibility map could help the local governments in landslide hazard mitigation, land use planning, and landscape protection.
An estimation of where forest fragmentation is likely to occur is critically important for improving the integrity of the forest landscape. We prepare a forest fragmentation susceptibility map for the first time by developing an integrated model and identify its causative factors in the forest landscape. Our proposed model is based upon the synergistic use of the earth observation data, forest fragmentation approach, patch forests, causative factors, and the weight-of-evidence (WOE) method in a Geographical Information System (GIS) platform. We evaluate the applicability of the proposed model in the Indian Himalayan region, a region of rich biodiversity and environmental significance in the Indian subcontinent. To obtain a forest fragmentation susceptibility map, we used patch forests as past evidence of completely degraded forests. Subsequently, we used these patch forests in the WOE method to assign the standardized weight value to each class of causative factors tested by the Variance Inflation Factor (VIF) method. Finally, we prepare a forest fragmentation susceptibility map and classify it into five levels: very low, low, medium, high, and very high and test its validity using 30% randomly selected patch forests. Our study reveals that around 40% of the study area is highly susceptible to forest fragmentation. This study identifies that forest fragmentation is more likely to occur if proximity to built-up areas, roads, agricultural lands, and streams is low, whereas it is less likely to occur in higher altitude zones (more than 2000 m a.s.l.). Additionally, forest fragmentation will likely occur in areas mainly facing south, east, southwest, and southeast directions and on very gentle and gentle slopes (less than 25 degrees). This study identifies Himalayan moist temperate and pine forests as being likely to be most affected by forest fragmentation in the future. The results suggest that the study area would experience more forest fragmentation in the future, meaning loss of forest landscape integrity and rich biodiversity in the Indian Himalayan region. Our integrated model achieved a prediction accuracy of 88.7%, indicating good accuracy of the model. This study will be helpful to minimize forest fragmentation and improve the integrity of the forest landscape by implementing forest restoration and reforestation schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.