In this paper, we present the local convergence analysis of Werner-King's method to approximate the solution of a nonlinear equation in Banach spaces. We establish the local convergence theorem under conditions on the first and second Fréchet derivatives of the operator involved. The convergence analysis is not based on the Taylor expansions as in the earlier studies (which require the assumptions on the third order Fréchet derivative of the operator involved). Thus our analysis extends the applicability of Werner-King's method. We illustrate our results with numerical examples. Moreover, the dynamics and the basins of attraction are developed and demonstrated.
Local convergence of order three has been established for the Newton–Simpson method (NS), provided that derivatives up to order four exist. However, these derivatives may not exist and the NS can converge. For this reason, we recover the convergence order based only on the first two derivatives. Moreover, the semilocal convergence of NS and some of its extensions not given before is developed. Furthermore, the dynamics are explored for these methods with many illustrations. The study contains examples verifying the theoretical conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.