In 2009, Noor and Waseem studied an important third-order iterative method. The convergence order is obtained using Taylor expansion and assumptions on the derivatives of order up to four. In this paper, we have obtained convergence order three for this method using assumptions on the first and second derivatives of the involved operator. Further, we have extended the method to obtain a fifth- and a sixth-order methods. The dynamics of the methods are also provided in this study. Numerical examples are included. The same technique can be used to extend the utilization of other single or multistep methods.
Local convergence of order three has been established for the Newton–Simpson method (NS), provided that derivatives up to order four exist. However, these derivatives may not exist and the NS can converge. For this reason, we recover the convergence order based only on the first two derivatives. Moreover, the semilocal convergence of NS and some of its extensions not given before is developed. Furthermore, the dynamics are explored for these methods with many illustrations. The study contains examples verifying the theoretical conditions.
On the basis of the new iterative technique designed by Zhongli Liu in 2016 with convergence orders of three and five, an extension to order six can be found in this paper. The study of high-convergence-order iterative methods under weak conditions is of extreme importance, because higher order means that fewer iterations are carried out to achieve a predetermined error tolerance. In order to enhance the practicality of these methods by Zhongli Liu, the convergence analysis is carried out without the application of Taylor expansion and requires the operator to be only two times differentiable, unlike the earlier studies. A semilocal convergence analysis is provided. Furthermore, numerical experiments verifying the convergence criteria, comparative studies and the dynamics are discussed for better interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.