In this paper, human faces are detected using the skin color information and the Lines-of-Separability (LS) face model. The various skin color spaces based on widely used color models such as RGB, HSV, YCbCr, YUV and YIQ are compared and an appropriate color model is selected for the purpose of skin color segmentation. The proposed approach of skin color segmentation is based on YCbCr color model and sigma control limits for variations in its color components. The segmentation by the proposed method is found to be more efficient in terms of speed and accuracy. Each of the skin segmented regions is then searched for the facial features using the LS face model to detect the face present in it. The LS face model is a geometric approach in which the spatial relationships among the facial features are determined for the purpose of face detection. Hence, the proposed approach based on the combination of skin color segmentation and LS face model is able to detect single as well as multiple faces present in a given image. The experimental results and comparative analysis demonstrate the effectiveness of this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.