In the past few years, there has been increasing interest in surface plasmon-polaritons, as a result of the strong near-field enhancement of the electric fields at a metal-dielectric interface. Here we show the first demonstration of a monolithically integrated plasmonic focal plane array (FPA) in the mid-infrared region, using a metal with a two-dimensional hole array on top of an intersubband quantum-dots-in-a-well (DWELL) heterostructure FPA coupled to a read-out integrated circuit. Excellent infrared imagery was obtained with over a 160% increase in the ratio of the signal voltage (V s ) to the noise voltage (V n ) of the DWELL camera at the resonant wavelength of λ = 6.1 µm. This demonstration paves the way for the development of a new generation of pixel-level spectropolarimetric imagers, which will enable bio-inspired (for example, colour vision) infrared sensors with enhanced detectivity (D*) or higher operating temperatures.
Quantum dot infrared photodetectors (QDIPs) have made significant progress after their early demonstration about a decade ago. The progress made by QDIP technology over the last few years is reviewed and compared with quantum well infrared photodetectors (QWIPs). It is shown that the performance of QDIPs has significantly improved using novel architectures such as dots-in-a-well designs, and large-format (1 K 1 K) focal plane arrays have been realized. However, even though there are significant reports of performance parameters better than QWIPs from single-pixel devices, QDIP-based focal plane arrays are still a factor of 3-5 worse in terms of noise equivalent temperature difference. The reasons for the performance gap and the key scientific and technological challenges that need to be addressed to achieve the full potential of QD-based technology are discussed.Three-dimensional rendition of quantum dots in a well structure.
We report on the design and performance of multi-stack InAs/InGaAs sub-monolayer (SML) quantum dots (QD) based infrared photodetectors (SML-QDIP). SML-QDIPs are grown with the number of stacks varied from 2 to 6. From detailed radiometric characterization, it is determined that the sample with 4 SML stacks has the best performance. The s-to-p (s/p) polarized spectral response ratio of this device is measured to be 21.7%, which is significantly higher than conventional Stranski-Krastanov quantum dots (∼13%) and quantum wells (∼2.8%). This result makes the SML-QDIP an attractive candidate in applications that require normal incidence.
We report on an interband cascade mid-wave infrared (MWIR) detector based on type-II InAs/GaSb/AlSb strained layer superlattices (T2SL). The reported device has a seven-stage cascade region, each segment containing a MWIR absorber region, a graded T2SL transport region, and an interband tunneling region. Above room temperature spectral response was observed, with a cutoff wavelength of 7 μm at 420 K. Detailed radiometric measurements yielded a Johnson noise limited detectivity of 3.0 × 1011 cmHz1/2W−1 (8.9 × 108 cmHz1/2W−1) and a dark current density of 3.6 × 10−7 A/cm−2 (7.3 × 10−3 A/cm−2) near zero bias with a 100% cutoff wavelength of 5.2 μm and 6.2 μm at 77 K (295 K), respectively, with an estimated 36.2% QE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.