Partial volume effects (PVE) are a consequence of limited spatial resolution in brain imaging. In arterial spin labeling (ASL) MRI, the problem is exacerbated by the nonlinear dependency of the ASL signal on magnetization contributions from each tissue within an imaged voxel. We have developed an algorithm that corrects for PVE in ASL imaging. The algorithm is based on a model that represents the voxel intensity as a weighted sum of pure tissue contribution, where the weighting coefficients are the tissue's fractional volume in the voxel. Using this algorithm, we were able to estimate cerebral blood flow (CBF) for gray matter (GM) and white matter (WM) independently. The average voxelwise ratio of GM to WM CBF was ϳ3.2, in good agreement with reports in the literature. As proof of concept, data from PVE-corrected method were compared with those from the conventional, PVE-uncorrected method. As hypothesized, the two yielded similar CBF values for voxels containing >95% GM and differed in proportion with the voxels' heterogeneity. More importantly, the GM CBF assessed with the PVEcorrected method was independent of the voxels' heterogeneity, implying that estimation of flow was unaffected by PVE. An example of application of this algorithm in motor-activation data is also given. Magn Reson Med 60:1362-1371, 2008.
Continuous arterial spin labeling (CASL) magnetic resonance imaging (MRI) was combined with multivariate analysis for detection of an Alzheimer's disease (AD)-related cerebral blood flow (CBF) covariance pattern. Whole-brain resting CBF maps were obtained using spin echo, echo planar imaging (SE-EPI) CASL in patients with mild AD (n = 12, age = 70.7 ± 8.7 years, 7 males, modified Mini-Mental State Examination (mMMS) = 38.7/57 ± 11.1) and age-matched healthy controls (HC) (n = 20; age = 72.1 ± 6.5 years, 8 males). A covariance pattern for which the mean expression was significantly higher (P < 0.0005) in AD than in HC was identified containing posterior cingulate, superior temporal, parahippocampal, and fusiform gyri, as well as thalamus, insula, and hippocampus. The results from this analysis were supplemented with those from the more standard, region of interest (ROI) and voxelwise, univariate techniques. All ROIs (17/hemisphere) showed significant decrease in CBF in AD (P < 0.001 for all ROIs, a corrected = 0.05). The area under the ROC curve for discriminating AD versus HC was 0.97 and 0.94 for covariance pattern and gray matter ROI, respectively. Fewer areas of depressed CBF in AD were detected using voxelwise analysis (corrected, P < 0.05). These areas were superior temporal, cingulate, middle temporal, fusiform gyri, as well as inferior parietal lobule and precuneus. When tested on extensive split-half analysis to map out the replicability of both multivariate and univariate approaches, the expression of the pattern from multivariate analysis was superior to that of the univariate.
The purpose of this preliminary study was to examine cerebral blood flow (CBF) as measured by arterial spin labeling (ASL) in tissue classified as white matter hyperintensities (WMH), normal appearing white matter, and grey matter. Seventeen healthy older adults received structural and ASL MRI. Cerebral blood flow was derived for three tissue types: WMH, normal appearing white matter, and grey matter. Cerebral blood flow was lower in WMH areas relative to normal appearing white matter, which in turn, was lower than grey matter. Regions with consistently lower CBF across individuals were more likely to appear as WMH. Results are consistent with an emerging literature linking diminished regional perfusion with the risk of developing WMH.
Cerebral blood flow (CBF) is a well-established correlate of brain function and therefore an essential parameter for studying the brain at both normal and diseased states. Arterial spin labeling (ASL) is a noninvasive fMRI technique that uses arterial water as an endogenous tracer to measure CBF. ASL provides reliable absolute quantification of CBF with higher spatial and temporal resolution than other techniques. And yet, the routine application of ASL has been somewhat limited. In this review, we start by highlighting theoretical complexities and technical challenges of ASL fMRI for basic and clinical research. While underscoring the main advantages of ASL versus other techniques such as BOLD, we also expound on inherent challenges and confounds in ASL perfusion imaging. In closing, we expound on several exciting developments in the field that we believe will make ASL reach its full potential in neuroscience research.
The accuracy of the cerebral blood flow (CBF) imaging methods in humans has been impeded by the partial volume effects (PVE), which are a consequence of the limited spatial resolution. Because of brain atrophy, PVE can be particularly problematic in imaging the elderly and can considerably overestimate the CBF difference with the young. The primary goal of this study was to separate the structural decline from the true CBF reduction in elderly. To this end, a PVEcorrection algorithm was applied on the CBF images acquired with spin-echo EPI continuous arterial spin labeling MRI (voxel size = 3.4 × 3.4 × 8 mm 3 ). Tissue-specific CBF images that were independent of voxels' tissue fractional volume were obtained in elderly (N = 30) and young (N = 26); mean age difference was 43 years. Globally, PVE-corrected gray matter CBF was 88.2 ± 16.1 and 107.3±17.5 mL/100g min in elderly and young, respectively. The largest PVE contribution was found in the frontal lobe and accounted for an additional 10% and 12% increase in the agerelated CBF difference between men and women, respectively. The GM-to-WM CBF ratios were found to be on average 3.5 in elderly and 3.9 in young. Whole brain voxelwise comparisons showed marked CBF decrease in anterior cingulate (bilateral), caudate (bilateral), cingulate gyrus (bilateral), cuneus (left), inferior frontal gyrus (left), insula (left), middle frontal gyrus (left), precuneus (bilateral), prefrontal cortex (bilateral), superior frontal gyrus (bilateral) in men and amygdala (bilateral), hypothalamus (left), hippocampus (bilateral), and middle frontal gyrus (right) in women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.