The reanalysis of genomics and proteomics datasets by bioinformatics approaches is an appealing way to examine large amounts of reliable data. This can be especially true in cases such as Alzheimer’s disease, where the access to biological samples, along with well-defined patient information can be challenging. Considering the inflammatory part of Alzheimer’s disease, our aim was to examine the presence of antimicrobial and immunomodulatory peptides in human proteomic datasets deposited in the publicly available proteomics database ProteomeXchange (http://www.proteomexchange.org/). First, a unified, comprehensive human antimicrobial and immunomodulatory peptide database, containing all known human antimicrobial and immunomodulatory peptides was constructed and used along with the datasets containing high-quality proteomics data originating from the examination of Alzheimer’s disease and control groups. A throughout network analysis was carried out, and the enriched GO functions were examined. Less than 1% of all identified proteins in the brain were antimicrobial and immunomodulatory peptides, but the alterations characteristic of Alzheimer’s disease could be recapitulated with their analysis. Our data emphasize the key role of the innate immune system and blood clotting in the development of Alzheimer’s disease. The central role of antimicrobial and immunomodulatory peptides suggests their utilization as potential targets for mechanistic studies and future therapies.
Metabolomics strategies are widely used to examine obesity and type 2 diabetes (T2D). Patients with obesity (n = 31) or T2D (n = 26) and sex- and age-matched controls (n = 28) were recruited, and serum and tear samples were collected. The concentration of 23 amino acids and 10 biogenic amines in serum and tear samples was analyzed. Statistical analysis and Pearson correlation analysis along with network analysis were carried out. Compared to controls, changes in the level of 6 analytes in the obese group and of 10 analytes in the T2D group were statistically significant. For obesity, the energy generation, while for T2D, the involvement of NO synthesis and its relation to insulin signaling and inflammation, were characteristic. We found that BCAA and glutamine metabolism, urea cycle, and beta-oxidation make up crucial parts of the metabolic changes in T2D. According to our data, the retromer-mediated retrograde transport, the ethanolamine metabolism, and, consequently, the endocannabinoid signaling and phospholipid metabolism were characteristic of both conditions and can be relevant pathways to understanding and treating insulin resistance. By providing potential therapeutic targets and new starting points for mechanistic studies, our results emphasize the importance of complex data analysis procedures to better understand the pathomechanism of obesity and diabetes.
Saliva is an easy-to access body fluid with high diagnostic potential. The utilization of saliva for oral cancer diagnosis can be an attractive possibility. Besides the oral cancer, it is important to better understand the precancerous lesions such as oral lichen planus (OLP) and leukoplakia (OLK). In order to examine the changes of salivary proteins in controls, patients with oral cancer, and patients with precancerous conditions, proximity extension assay was utilized. Some proteins and functions were characteristic to the examined groups and can serve as a starting point for further biomarker studies. The different nature of OLK and OLP was demonstrated, showing the malignant transformation and the inflammation as the prominent biological processes in the OLK and OLP, respectively. The salivary level of IL6 was verified using quantitative ELISA and the mRNA level was also studied. Elevated IL6 levels could be detected in precancerous groups compared to controls.
Lentivirus-based vectors derived from human immunodeficiency viruses type 1 and 2 (HIV-1 and 2) are widely used tools in research and may also be utilized in clinical settings. Like their parental virions, they are known to depend on the cellular machinery for successful gene delivery and integration. While most of the studies on cellular proteomic and transcriptomic changes have focused on the late phase of the transduction, studies of those changes in early time-points, especially in the case of HIV-2 based vectors, are widely lacking. Using second generation HIV-1 and 2 vesicular stomatitis virus G protein (VSV-G) pseudotyped lentiviral vectors, we transduced HEK-293T human embryonic kidney cells and carried out transcriptomic profiling at 0 and 2 h time points, with accompanying proteomic analysis at 2 h following transduction. Significant variations were observed in gene expression profile between HIV-1 and HIV-2 transduced samples. Thrombospondin 1 (THBS1), collagens (COL1A2, COL3A1), and eukaryotic translation factors (EIF3CL) in addition to various genes coding for long non-coding RNA (lncRNA) were significantly upregulated 2 h after HIV-2 transduction compared to HIV-1. Label-free quantification mass spectrometry (MS) indicated that seven proteins involved in RNA binding, mRNA transport, and chaperoning were significantly downregulated. The identification of cellular protein targets of lentiviral vectors and their effect on the cellular transcriptome will undoubtedly shed more light on their complex life cycle and may be utilized against infection by their parental lentiviruses. Furthermore, characterizing the early phase of HIV-2 infection may aid in the understanding of its pathomechanism and long incubation period.
Chemical barriers are composed of those sites of the human body where potential pathogens can contact the host cells. A chemical barrier is made up by different proteins that are part of the antimicrobial and immunomodulatory protein/peptide (AMP) family. Proteins of the AMP family exert antibacterial, antiviral, and/or antifungal activity and can modulate the immune system. Besides these proteins, a wide range of proteases and protease inhibitors can also be found in the chemical barriers maintaining a proteolytic balance in the host and/or the pathogens. In this review, we aimed to identify the chemical barrier components in nine human body fluids. The interaction networks of the chemical barrier proteins in each examined body fluid were generated as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.