The motive of this paper is to discuss the local convergence of a two-step Newton-type method of convergence rate three for solving nonlinear equations in Banach spaces. It is assumed that the first order derivative of nonlinear operator satisfies the generalized Lipschitz i.e., L-average condition. Also, some results on convergence of the same method in Banach spaces are established under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak L-average particularly it is assumed that L is positive integrable function but not necessarily non-decreasing. Our new idea gives a tighter convergence analysis without new conditions. The proposed technique is useful in expanding the applicability of iterative methods. Useful examples justify the theoretical conclusions.
In the given study, we investigate the three-step NTS’s ball convergence for solving nonlinear operator equations with a convergence order of five in a Banach setting. A nonlinear operator’s first-order derivative is assumed to meet the generalized Lipschitz condition, also known as the κ-average condition. Furthermore, several theorems on the convergence of the same method in Banach spaces are developed with the conditions that the derivative of the operators must satisfy the radius or center-Lipschitz condition with a weak κ-average and that κ is a positive integrable but not necessarily non-decreasing function. This novel approach allows for a more precise convergence analysis even without the requirement for new circumstances. As a result, we broaden the applicability of iterative approaches. The theoretical results are supported further by illuminating examples. The convergence theorem investigates the location of the solution ϵ* and the existence of it. In the end, we achieve weaker sufficient convergence criteria and more specific knowledge on the position of the ϵ* than previous efforts requiring the same computational effort. We obtain the convergence theorems as well as some novel results by applying the results to some specific functions for κ(u). Numerical tests are carried out to corroborate the hypotheses established in this work.
The local convergence analysis of a seventh order algorithm for solving nonlinear equations is presented inthe current discussion by assuming that the ?rst-order Fréchet derivative belongs to the Lipschitz class. Thisapproach yields radii of convergence ball, error bound and uniqueness of the solution. Further, generalizationof the study extended by considering Hölder continuity condition. At last, we estimated the radii of theconvergence balls using a variety of numerical examples, including a nonlinear Hammerstein equation.
The local convergence analysis of the multi-step seventh order method to solve nonlinear equations is presented in this paper. The point of this paper is that our proposed study requires a weak hypothesis where the Fréchet derivative of the nonlinear operator satisfies the ψ-continuity condition, which thereby extends the applicability of the method when both Lipschitz and Hölder conditions fail. The convergence in this study is considered under the hypotheses on the first-order derivative without involving derivatives of the higher-order. To find a subset of the original convergence domain, a strategy is devised here. As a result, the new Lipschitz constants are at least as tight as the old ones, allowing for a more precise convergence analysis in the local convergence case. Some concrete numerical examples showing the performance of the method over some existing schemes are presented in this article.
The motive of this paper is to discuss the local convergence of a two-step Newton type method of convergence rate three for solving nonlinear equations in Banach spaces. It is assumed that the first order derivative of nonlinear operator satisfies the generalized Lipschitz i.e. L-average condition. Also, some results on convergence of the same method in Banach spaces are established under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak L-average particularly it is assumed that L is positive integrable function but not necessarily non-decreasing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.