The insecticidal activities of essential oils obtained from black pepper, eucalyptus, rosemary, and tea tree and their binary combinations were investigated against the green peach aphid, Myzus persicae (Aphididae: Hemiptera), under laboratory and glasshouse conditions. All the tested essential oils significantly reduced and controlled the green peach aphid population and caused higher mortality. In this study, black pepper and tea tree pure essential oils were found to be an effective insecticide, with 80% mortality when used through contact application. However, for combinations of essential oils from black pepper + tea tree (BT) and rosemary + tea tree (RT) tested as contact treatment, the mortality was 98.33%. The essential oil combinations exhibited synergistic and additive interactions for insecticidal activities. The combination of black pepper + tea tree, eucalyptus + tea tree (ET), and tea tree + rosemary showed enhanced activity, with synergy rates of 3.24, 2.65, and 2.74, respectively. Essential oils formulation was effective on the mortality of aphids. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that stability of a mixture of essential oils was not affected by store temperature (15, 25, and 35 °C) and the functional groups were not changed during storage. Based on our results, the essential oils can be used as a commercial insecticide against M. persicae.
Headspace solid microextraction (HS-SPME) and GC-MS were used to investigate volatile organic compounds (VOCs) from cabbage plants infested and uninfested with green peach aphid Myzus persicae. The HS-SPME combined with GC-MS analysis of the volatiles described the differences between the infested and uninfested cabbage. Overall, 28 compounds were detected in infested and uninfested cabbage. Some VOCs released from infested cabbage were greater than uninfested plants and increased the quantity of the composition from infested plants. According to the peak area from the GC-MS analysis, the VOCs from infested cabbage consisted of propane, 2-methoxy, alpha- and beta pinene, myrcene, 1-hexanone, 5-methyl-1-phenyl-, limonene, decane, gamma-terpinen and heptane, 2,4,4-trimethyl. All these volatiles were higher in the infested cabbage compared with their peak area in the uninfested cabbage. The results of the study using a Y-shape olfactometer revealed that the VOCs produced by infested cabbage attracted Myzus persicae substantially more than uninfested plants or clean air. The percentage of aphid choice was 80% in favor of infested cabbage; 7% were attracted to the clean air choice and uninfested plants. A total of aphids 7% were attracted to clean air. Comparing between infested and uninfested cabbage plants, the aphid was attracted to 63% of the infested cabbage, versus 57% of the uninfested cabbage. The preferences of Aphidus colemani and Aphelinus abdominalis to the infested or uninfested plants with M. persicae and compared with clean air indicated that parasitoids could discriminate the infested cabbage. Both parasitoids significantly responded to the plant odor and were attracted to 86.6% of the infested cabbage plants.
In this paper, in order to solve systems of nonlinear equations, a new class of frozen Jacobian multi-step iterative methods is presented. Our proposed algorithms are characterized by a highly convergent order and an excellent efficiency index. The theoretical analysis is presented in detail. Finally, numerical experiments are presented for showing the performance of the proposed methods, when compared with known algorithms taken from the literature.
A field experiment was conducted at al-Faris agricultural testing station during the autumn season of 2019-2020, which is located in Zubair district, which is located approximately 25 km southwest of Basra governorate in sandy loam soil, with the aim of assessing the response of five varieties of potato plant (V1,V2, V3, V4, V5 )for different levels of saline stress( S1= 1.5, S2= 3.5, S3= 5.5, S4= 7.5) d S / m The study was done as a factorial experiment based on randomized complete block design with three replicates (R.C.B.D), 60 experimental units resulting from( five varieties and four saline levels) * 3 repeaters. It was noted from the results that V1 * S1 is significant effect in most of the qualities studied if it gives the highest rates for each of the following qualities,weight of tuber g . plant-¹, Number of tubers/plants, the yield of one plant g and the total yield of a ton. donem-¹ and its rates were as follows (85.92 g.plant-¹, 6.35 tubers. Plant-¹,546.10 g, 5.34 tons. donem-¹ ) . (V3, V4)* S4 gave the lowest rates for most trained qualities, and the plants of the V1, V2 gave the high rate of the percentage of dry matter in tubers and the percentage of starch %.
The local convergence analysis of the multi-step seventh order method to solve nonlinear equations is presented in this paper. The point of this paper is that our proposed study requires a weak hypothesis where the Fréchet derivative of the nonlinear operator satisfies the ψ-continuity condition, which thereby extends the applicability of the method when both Lipschitz and Hölder conditions fail. The convergence in this study is considered under the hypotheses on the first-order derivative without involving derivatives of the higher-order. To find a subset of the original convergence domain, a strategy is devised here. As a result, the new Lipschitz constants are at least as tight as the old ones, allowing for a more precise convergence analysis in the local convergence case. Some concrete numerical examples showing the performance of the method over some existing schemes are presented in this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.