Transfer RNA (tRNA)‐derived small RNAs (tsRNAs) have recently emerged as important regulators of protein translation and shown to have diverse biological functions. However, the underlying cellular and molecular mechanisms of tsRNA function in the context of dynamic cell‐state transitions remain unclear. Expression analysis of tsRNAs in distinct heterologous cell and tissue models of stem vs. differentiated states revealed a differentiation‐dependent enrichment of 5′‐tsRNAs. We report the identification of a set of 5′‐tsRNAs that is upregulated in differentiating mouse embryonic stem cells (mESCs). Notably, interactome studies with differentially enriched 5′‐tsRNAs revealed a switch in their association with “effector” RNPs and “target” mRNAs in different cell states. We demonstrate that specific 5′‐tsRNAs can preferentially interact with the RNA‐binding protein, Igf2bp1, in the RA‐induced differentiated state. This association influences the transcript stability and thereby translation of the pluripotency‐promoting factor, c‐Myc, thus providing a mechanistic basis for how 5′‐tsRNAs can modulate stem cell states in mESCs. Together our study highlights the role of 5′‐tsRNAs in defining distinct cell states.
Fluorescent biosensors for living cells currently require laborious optimization and a unique design for each target. They are limited by the availability of naturally occurring ligands with appropriate target specificity. Here we describe a biosensor based on an engineered fibronectin monobody scaffold that can be tailored to bind different targets via high throughput screening. This Src family kinase (SFK) biosensor was made by derivatizing a monobody specific for activated SFK with a bright dye whose fluorescence increases upon target binding. We identified sites for dye attachment and alterations to eliminate vesiculation in living cells, providing a generalizable scaffold for biosensor production. This approach minimizes cell perturbation because it senses endogenous, unmodified target, and because sensitivity is enhanced by direct dye excitation. Automated correlation of cell velocities and SFK activity revealed that SFK are activated specifically during protrusion. Activity correlates with velocity, and peaks 1–2 microns from the leading edge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.