This paper presents the submission by the HeiMorph team to the SIGMORPHON 2022 task 2 of Morphological Acquisition Trajectories. Across all experimental conditions, we have found no evidence for the so-called Ushaped development trajectory. Our submitted systems achieve an average test accuracies of 55.5% on Arabic, 67% on German and 73.38% on English. We found that, bigram hallucination provides better inferences only for English and Arabic and only when the number of hallucinations remains low.
This paper presents our submission to the SIGMORPHON 2023 task 2 of Cognitively Plausible Morphophonological Generalization in Korean. We implemented both Linear Discriminative Learning and Transformer models and found that the Linear Discriminative Learning model trained on a combination of corpus and experimental data showed the best performance with the overall accuracy of around 83%. We found that the best model must be trained onboth corpus data and the experimental data of one particular participant. Our examination of speaker-variability and speaker-specific information did not explain why a particular participant combined well with the corpus data.We recommend Linear Discriminative Learning models as a future non-neural baseline system, owning to its training speed, accuracy, model interpretability and cognitive plausibility. In order to improve the model performance, we suggest using bigger data and/or performing data augmentation and incorporating speaker and item-specifics considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.