Alongside the rising global water demand, continued stress on current water supplies has sparked interest in using nontraditional source waters for energy, agriculture, industry, and domestic needs. Membrane technologies have emerged as one of the most promising approaches to achieve water security, but implementation of membrane processes for increasingly complex waters remains a challenge. The technical feasibility of membrane processes replacing conventional treatment of alternative water supplies (e.g., wastewater, seawater, and produced water) is considered in the context of typical and emerging water quality goals. This review considers the effectiveness of current technologies (both conventional and membrane based), as well as the potential for recent advancements in membrane research to achieve these water quality goals. We envision the future of water treatment to integrate advanced membranes (e.g., mixed-matrix membranes, block copolymers) into smart treatment trains that achieve several goals, including fit-for-purpose water generation, resource recovery, and energy conservation.
Polymer cation exchange membranes (CEMs) are widely used in water treatment processes. The fundamental factors that control the separation and selectivity of cations with different valences in CEMs are not fully understood. In this study, we use atomistic molecular dynamics simulations to investigate the underlying molecular mechanisms that control the mobility of cations with different valences in Nafion membranes. Our results indicate structural differences in binding of monovalent and divalent cations, which gives rise to differences in ion diffusion in Nafion. Monovalent cations are shown to be “territorially” bound, i.e., bound while partially hydrated, to the fixed charge groups whereas divalent cations are shown to be “site” bound, i.e., bound while fully dehydrated, to the charge groups on the polymer. This difference in binding structure gives rise to differences in transport characteristics of cations in Nafion.
Polymeric ion exchange membranes are used in water purification processes to separate ions from water. The distribution and transport of ionic species through these membranes depend on a variety of factors, including membrane charge density, morphology, chemical structure, and the specific ionic species present in the fluid. The electrical potential distribution between membranes and solutions is typically described using models based on Donnan theory. An extension of the original theory is proposed to account for the nonideal behavior of ions both in the fluid and in the membrane as well to provide a more robust description of interactions of solutes with fixed charge groups on the polymer backbone. In this study, the variation in dielectric permittivity in the membrane medium with electric field strength is taken into account in a model based on Gouy–Chapman double-layer theory to provide a more accurate description of ion activity coefficients in an ion exchange membrane. A semianalytical model is presented that accounts for the variation in dielectric permittivity of water in a charged polymer membrane. A comparison of this model with Manning’s counterion condensation model clearly demonstrates that by incorporating changes in water dielectric permittivity with electric field strength, much better agreement with experiments can be obtained over a range of salt concentrations for different ions.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.