This paper presents experimental and numerical investigations conducted on typical dhajji buildings found in the northern mountainous areas of Kashmir and surrounding regions to evaluate their in-plane lateral load response. The experimental work included an in-plane quasistatic cyclic test on three full-scale walls as well as monotonic tension and bend tests on main connections. The test results show that the dhajji-dewari system of buildings possesses tremendous resilience against lateral forces. The function of connections, especially the connections between the vertical posts and bottom plate, control the performance of the system. The test results also indicate that although masonry infill does not contribute to lateral load capacity, it significantly increases the energy dissipation capacity of system. The data accrued from the tests has been used in nonlinear static push-over analysis of the numerical models to develop simplified analytical tools for facilitating lateral load performance evaluation of dhajji structures.
The article presents seismic resistance evaluation study of unreinforced brick masonry buildings.The study was carried out as part of the Ph.D. research work of the first author. As part of the study, in addition to the standard laboratory tests, a dynamic field test was carried out on single-story, single-room unreinforced masonry structure. The model structure was tested in actual ground conditions against simulated earthquake vibrations produced through controlled explosions, especially designed for this purpose. Based on masonry properties accrued from lab and field tests, finite element models of the brickwork system were also studied. Finally, the software named, "Shear Damage Index (SDI)," developed as part of this study, was used to plot contours of shear demand (shear stress) to shear capacity (shear strength) ratio on the numerical model and hence to identify potential weak zones in the model for possible strengthening of those locations.
Half-Dressed rubble stone (DS) masonry structures as found in the Himalayan region are investigated using experimental and analytical studies. The experimental study included a shake table test on a one-third scaled structural model, a representative of DS masonry structure employed for public critical facilities, e.g. school buildings, offices, health care units, etc. The aim of the experimental study was to understand the damage mechanism of the model, develop damage scale towards deformation-based assessment and retrieve the lateral force-deformation response of the model besides its elastic dynamic properties, i.e. fundamental vibration period and elastic damping. The analytical study included fragility analysis of building prototypes using a fully probabilistic nonlinear dynamic method. The prototypes are designed as SDOF systems assigned with lateral, force-deformation constitutive law (obtained experimentally). Uncertainties in the constitutive law, i.e. lateral stiffness, strength and deformation limits, are considered through random Monte Carlo simulation. Fifty prototype buildings are analyzed using a suite of ten natural accelerograms and an incremental dynamic analysis technique. Fragility and vulnerability functions are derived for the damageability assessment of structures, economic loss and casualty estimation during an earthquake given the ground shaking intensity, essential within the context of risk assessment of existing stock aiming towards risk mitigation and disaster risk reduction
The production factories of concrete masonry units (CMUs) mostly rely on destructive testing as per ASTM C140 [1] for quality assurance. Such testing is expensive and is, therefore, performed on a limited basis. This research investigates the prospects of using non-destructive tests with the rebound hammer and ultrasonic pulse velocity for evaluating the compressive strength of concrete specimens made with materials, mixture proportions and compaction representative of CMUs. A statistical analysis of the testing data shows that these non-destructive testing techniques are not equally reliable. It is concluded that pulse velocity can be a useful tool for the in-situ strength evaluation of CMUs.
Heterosis and combining ability were calculated for 13 different morphological, yield, and quality-related traits of 18 F1 Brassica napus hybrids developed through line × tester mating design using 6 lines and 3 testers along with their parents. Line × tester ANOVA revealed highly significant results among all characters except for primary branches per plant. ZM-R-2 (tester) was identified as a good general combiner for, days to 50% flowering, days to 50% siliqua formation, linolenic acid (%), number of secondary branches, siliquae per plant, and seeds per siliqua, while ZM-R-6 for 100-seed weight, protein, and oleic acid percentage. ZM-R-11 × ZM-R-2 was identified as a good specific combiner for days to flowering, 50% flowering, and 50% siliqua (-5.19**, -4.70**, -5.37**), while ZM-M-6 × ZM-R-2, ZN-M-9 × ZM-R-6, ZN-R-8 × ZM-R-6, Shiralee × ZM-R-2 were good specific combiners for seeds per siliqua, 100-seed weight, oil, and protein percentage, respectively. Highly significant and desired mid-parent heterosis was observed for ZM-R-7 × ZM-R-2 for different morphological and quality traits like linolenic acid content and Shiralee × ZM-R-2 for oil (24.87**) and protein content (19.27**). Positive mid parental heterosis for oleic acid (46.81**), linoleic acid, and seed yield plant-1 were observed in ZM-R-7 × ZM-R-10 and ZN-M-9 × ZM-R-10. These hybrids can be utilized as a source of genetic material for future breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.