Abstract:The main objective of managed aquifer recharge (MAR) in Finland is the removal of natural organic matter (NOM) from surface waters. A typical MAR procedure consists of the infiltration of surface water into a Quaternary glaciofluvial esker with subsequent withdrawal of the MAR treated water from wells a few hundred meters downstream. The infiltrated water should have a residence time of at least approximately one month before withdrawal to provide sufficient time for the subsurface processes needed to break down or remove humic substances. Most of the Finnish MAR plants do not have pretreatment and raw water is infiltrated directly into the soil. The objectives of this paper are to present MAR experiences and to discuss the need for and choice of pretreatment. Data from basin, sprinkling, and well infiltration processes are presented. Total organic carbon (TOC) concentrations of the raw waters presented here varied from 6.5 to 11 mg/L and after MAR the TOC concentrations of the abstracted waters were approximately 2 mg/L. The overall reduction of organic matter in the treatment (with or without pretreatment) was 70%-85%. Mechanical pretreatment can be used for clogging prevention. Turbidity of the Finnish lakes used as raw water does not necessitate pretreatment in basin and sprinkling infiltration, however, pretreatment in well infiltration needs to be judged separately. River waters may have high turbidity requiring pretreatment. Biodegradation of NOM in the saturated groundwater zone consumes dissolved oxygen. Thus, a high NOM concentration may create conditions for dissolution of iron and manganese from the soil. These conditions may be avoided by the addition of chemical pretreatment. Raw waters with TOC content up to at least approximately 8 mg/L were infiltrated without any considerations of chemical pretreatment, which should be evaluated based on local conditions.
An Oracle® relational database was integrated with a data management system including custom-made user interface, surface modeling, and three-dimensional (3D) modeling tools to produce an easily updatable 3D hydrogeologic model of the Virttaankangas aquifer, southwestern Finland. The area will be used to provide the 285,000 inhabitants of the Turku region with artificially recharged groundwater. The implementation of this artificial recharge project requires capabilities to store and process a variety of data, which are updating on a daily basis. The database and the integrated modeling tools allow the user to concentrate on the interpretation of geologic factors and their interactions and to have an access to the most up-to-date 3D hydrogeologic model, while the common and laborious routine tasks have been automated. Integration of the geodatabase, 3D hydrogeologic model, groundwater flow model and possible solute transport models can be used to reach the quantitative understanding of the aquifer system. During the process, the benefits of using geologic models and other visualization tools can be applied to many sectors involved with the artificial infiltration project.
Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.
Background Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics —from the source of contamination, through the watershed to the DW production process—may help safeguard human health and the environment. Results The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemäenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p < 0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 ± 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 ± 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66–80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (≥13%) than in other groups (≤3%). Acidobacteria was more abundant in the DW treatment process (≥13%) than in others (≤2%). In total, the share of PHRB reads was higher in sewage and surface water than in the DW treatment samples. The seasonal effect in bacterial communities was observed only on surface water samples, with the lowest diversity during summer. Conclusions The low bacterial diversity and absence of PHRB read in the DW samples indicate AGR can produce biologically stable and microbiologically safe drinking water. Furthermore, the significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.