In the transition metal dichalcogenide IrTe 2 , low-temperature charge-ordered phase transitions involving Ir dimers lead to the occurrence of stripe phases of different periodicities, and nearly degenerate energies. Bulksensitive measurements have shown that, upon cooling, IrTe 2 undergoes two such first-order transitions to (5 × 1 × 5) and (8 × 1 × 8) reconstructed phases at T c 1 ∼ 280 K and T c 2 ∼ 180 K, respectively. Here, using surface sensitive probes of the electronic structure of IrTe 2 , we reveal the first-order phase transition at T c 3 = 165 K to the (6 × 1) stripes phase, previously proposed to be the surface ground state. This is achieved by combining x-ray photoemission spectroscopy and angle-resolved photoemission spectroscopy, which give access to the evolution of stripe domains and a particular surface state, the energy of which is dependent on the Ir dimer length. By performing measurements over a full thermal cycle, we also report the complete hysteresis of all these phases.
We have employed ab-initio density functional theory (DFT) to study the adsorption, dissociation, diffusion, and vibration of oxygen on Ag(110). We find that the four-fold hollow site is the preferred site 68.43.Jk, 68.43.Pq
Strain is ubiquitous in solid-state materials, but despite its fundamental importance and technological relevance, leveraging externally applied strain to gain control over material properties is still in its infancy. In particular, strain control over the diverse phase transitions and topological states in two-dimensional transition metal dichalcogenides remains an open challenge. Here, we exploit uniaxial strain to stabilize the long-debated structural ground state of the 2D topological semimetal IrTe2, which is hidden in unstrained samples. Combined angle-resolved photoemission spectroscopy and scanning tunneling microscopy data reveal the strain-stabilized phase has a 6 × 1 periodicity and undergoes a Lifshitz transition, granting unprecedented spectroscopic access to previously inaccessible type-II topological Dirac states that dominate the modified inter-layer hopping. Supported by density functional theory calculations, we show that strain induces an Ir to Te charge transfer resulting in strongly weakened inter-layer Te bonds and a reshaped energetic landscape favoring the 6×1 phase. Our results highlight the potential to exploit strain-engineered properties in layered materials, particularly in the context of tuning inter-layer behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.