These results show that these two marine carotenoids inhibit lipase activity in the gastrointestinal lumen and suppress triglyceride absorption, and fucoxanthin was converted to fucoxanthinol in the intestine and released into the lymph.
We investigated the impact of Zn status on the maintenance of mucosal homeostasis. Rats were fed diets containing different amounts of Zn (30, 10, 5, <1 mg Zn/kg diet) for 21 d. Serum Zn concentrations were lower in rats fed marginally Zn-deficient (MZD; 5 mg Zn/kg diet) and severely Zn-deficient (<1 mg/kg) diets but not in those fed the marginally Zn-adequate diet (10 mg/kg) or the Zn-adequate (ZA; 30 mg/kg) group (P < 0.05). However, organ weights, colonic epithelial cell proliferation, and crypt fission did not differ between the MZD and ZA groups. We then evaluated whether MZD modulated dextran sulfate sodium (DSS)-induced colonic inflammation by administering 2% DSS to the MZD and ZA groups for 7 d. Myeloperoxidase activity and TNFα production increased in response to DSS in the MZD group (P < 0.03). Colonic permeability in the 2 groups did not differ after DSS administration. In a culture experiment using isolated mesenteric leukocytes, TNFα production was higher (P < 0.05) and TNF receptor type I (TNFR1) expression was detected in culture medium containing 20 and 30 μmol/L of Zn compared with culture medium lacking Zn supplementation. These results suggest that MZD exacerbated colitis by modulating the immune response through the impairment of TNFα production and TNFR1 expression rather than through the impairment of epithelial barrier function.
Contribution of intestinal bacterial degradation of quercetin aglycone to the promotive effects of fructooligosaccharides and di-D-fructose anhydride III (DFAIII) on quercetin-3-O-beta-glucoside (Q3G) bioavailability was examined. Male Sprague-Dawley rats were fed 0.68% Q3G diets with or without 1.5% or 3% oligosaccharides for 2 weeks. Blood levels and urinary excretion of quercetin and methylquercetin conjugates, measured by methanol extraction and LC-MS analyses, were dose-dependently and adaptively increased by the oligosaccharide supplementation with increasing cecal fermentation (Experiment 1). Degradation of Q3G and quercetin aglycone by cecal bacteria in oligosaccharide-fed rats was much lower than that in the control rats using an anaerobic culture system (Experiment 2). Using the ligated intestinal sacs of anesthetized rats, we found that the cecum possessed high absorptive capacity for quercetin derivatives (Experiment 3). These results demonstrate that feeding of the oligosaccharides strongly suppresses the bacterial degradation of quercetin aglycone in the cecum, thus largely contributing to the increased bioavailability of Q3G.
The presence of an α-1,6-glucosaccharide enhances absorption of water-soluble quercetin glycosides, a mixture of quercetin-3-O-β-d-glucoside (Q3G, 31.8%), mono (23.3%), di (20.3%) and more d-glucose adducts with α-1,4-linkage to a d-glucose moiety of Q3G, in a ligated small intestinal loop of anesthetized rats. We prepared α-1,6-glucosaccharides with different degrees of polymerization (DP) enzymatically and separated them into a megalo-isomaltosaccharide-containing fraction (M-IM, average DP=11.0) and an oligo-isomaltosaccharide-containing fraction (O-IM, average DP=3.6). Luminal injection of either saccharide fraction promoted the absorption of total quercetin-derivatives from the small intestinal segment and this effect was greater for M-IM than O-IM addition. M-IM also increased Q3G, but not the quercetin aglycone, concentration in the water-phase of the luminal contents more strongly than O-IM. The enhancement of Q3G solubilization in the luminal contents may be responsible for the increases in the quercetin glucoside absorption promoted by α-1,6-glucosaccharides, especially that by M-IM. These results suggest that the ingestion of α-1,6-glucosaccharides promotes Q3G bioavailability.
We demonstrated that melibiose, a nondigestible disaccharide composed of galactose and glucose with α-1,6 glycoside linkage, promotes the absorption of water-soluble quercetin glycosides in ligated small intestinal loop of anesthetized rats. Water-soluble quercetin glycoside, a quercetin-3-O-glucoside mixture (Q3GM), includes quercetin-3-O-glucoside (Q3G, 31.9%), mono (21.2%) and di (17.1%), glucose adducts with α-1,4 linkages. After instillation of Q3GM into the intestinal loop with or without melibiose, the plasma concentration of quercetin derivatives in the portal blood was considerably higher in the melibiose group at 60 min. Furthermore, we evaluated the hydrolytic rate of Q3G by the mucosal homogenate of the small intestine with six different disaccharides. Melibiose and isomaltose, which have α-1,6 glycoside linkage, were found to promote Q3G hydrolysis to aglycone. These results suggest that melibiose promotes quercetin glycoside absorption in rats by increasing glycoside hydrolysis in the intestinal lumen and that α-1,6 linkage is involved in this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.