Early diagnosis of Niemann-Pick diseases (NPDs) is important for better prognosis of such diseases. N-Palmitoyl-O-phosphocholine-serine (PPCS) is a new NPD biomarker possessing high sensitivity, and with its combination with sphingosylphosphocholine (SPC) it may be possible to distinguish NPD-C from NPD-A/B. In this study, a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method (method 1) and a validated LC-MS/MS analysis (method 2) of PPCS and SPC were developed, and we have proposed a diagnostic screening strategy for NPDs using a combination of serum PPCS and SPC concentrations. Nexera and API 5000 were used as LC-MS/MS systems. C18 columns with lengths of 10 and 50 mm were used for method 1 and 2, respectively. 2 H 3 -Labeled PPCS and nor-SPC were used as internal standards. Selective reaction monitoring in positive-ion mode was used for MS/MS. Run times of 1.2 and 8 min were set for methods 1 and 2, respectively. In both methods 1 and 2, two analytes showed high linearity in the range of 1-4000 ng/mL. Method 2 provided high accuracy and precision in method validation. Serum concentrations of both analytes were significantly higher in NPD-C patients than those of healthy subjects in both methods. Serum PPCS correlated between methods 1 and 2; however, it was different in the case of SPC. The serum PPCS/SPC ratio was different in healthy subjects, NPD-C, and NPD-A/B. These results suggest that using a combination of the two LC-MS/MS analytical methods for PPCS and SPC is useful for diagnostic screening of NPDs.
This study aimed to evaluate the capability of a piezoelectric sensor to detect a heart murmur in patients with congenital heart defects. Heart sounds and murmurs were recorded using a piezoelectric sensor and an electronic stethoscope in healthy neonates (n = 9) and in neonates with systolic murmurs caused by congenital heart defects (n = 9) who were born at a hospital. Signal data were digitally filtered by high-pass filtering, and the envelope of the processed signals was calculated. The amplitudes of systolic murmurs were evaluated using the signal-to-noise ratio and compared between healthy neonates and those with congenital heart defects. In addition, the correlation between the amplitudes of systolic murmurs recorded by the piezoelectric sensor and electronic stethoscope was determined. The amplitudes of systolic murmurs detected by the piezoelectric sensor were significantly higher in neonates with congenital heart defects than in healthy neonates (p < 0.01). Systolic murmurs recorded by the piezoelectric sensor had a strong correlation with those recorded by the electronic stethoscope (ρ = 0.899 and p < 0.01, respectively). The piezoelectric sensor can detect heart murmurs objectively. Mechanical improvement and automatic analysis algorithms are expected to improve recording in the future.
Genitopatellar syndrome (GPS) is a rare autosomal dominant disorder caused by de novo pathogenic variants in the KAT6B gene. It is characterized by genital abnormalities, patellar hypoplasia/agenesis, flexion contractures of the hips and knees, corpus callosum agenesis with microcephaly, and hydronephrosis and/or multiple renal cysts. More than half of patients with GPS have congenital heart defects, mostly atrial and/or ventricular septal defects, patent foramen ovale, and patent ductus arteriosus. We report a case of a Japanese neonate with a de novo heterozygous c.3769_3772delTCTA pathogenic variant in the KAT6B gene who presented with a cardiac intramural cavity of the ventricular septum at birth. The cavity unexpectedly disappeared at 1 month of age, but trabecular septal thinning and flash remained. The features of the cavity were not consistent with those of congenital ventricular diverticulum or aneurysm, and its identity and prognosis are still unclear. Because patients with GPS may exhibit various forms of cardiac malformation, careful cardiac examination and follow-up are required from birth in cases of suspected GPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.