Physical exercise induces translocation of GLUT4 from an intracellular pool to the cell surface in skeletal muscles and increases glucose uptake via an insulin-independent pathway. However, the molecular mechanism remains to be identified. Some studies have suggested that bradykinin is locally released from contracting muscles and may be responsible for GLUT4 translocation and the increase of glucose transport in skeletal muscles. To determine whether bradykinin directly triggers GLUT4 translocation, we established L6 myotubes, 3T3-L1 adipocytes, and Chinese hamster ovary cells stably expressing c-myc epitope-tagged GLUT4 (GLUT4myc) and bradykinin B2 receptors. We found that bradykinin directly triggered GLUT4myc translocation and increased the rate of glucose uptake in a dose-dependent manner in these cells. The translocation with bradykinin occurred even after pretreatment with an islet-activating protein, wortmannin, and phorbol 12,13-dibutyrate. The signaling pathway does not seem to be mediated by Gi, phosphatidylinositol 3-kinase, or protein kinase C. It is insulin-independent and via trimeric G-protein Gq. Bradykinin is probably one of the factors responsible for exercise-stimulated glucose uptake in skeletal muscles.
Olanexidine gluconate [1-(3,4-dichlorobenzyl)-5-octylbiguanide gluconate] (development code OPB-2045G) is a new monobiguanide compound with bactericidal activity. In this study, we assessed its spectrum of bactericidal activity and mechanism of action. The minimal bactericidal concentrations of the compound for 30-, 60-, and 180-s exposures were determined with the microdilution method using a neutralizer against 320 bacterial strains from culture collections and clinical isolates. Based on the results, the estimated bactericidal olanexidine concentrations with 180-s exposures were 869 g/ml for Gram-positive cocci (155 strains), 109 g/ml for Gram-positive bacilli (29 strains), and 434 g/ml for Gram-negative bacteria (136 strains). Olanexidine was active against a wide range of bacteria, especially Gram-positive cocci, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and had a spectrum of bactericidal activity comparable to that of commercial antiseptics, such as chlorhexidine and povidone-iodine. In vitro experiments exploring its mechanism of action indicated that olanexidine (i) interacts with the bacterial surface molecules, such as lipopolysaccharide and lipoteichoic acid, (ii) disrupts the cell membranes of liposomes, which are artificial bacterial membrane models, (iii) enhances the membrane permeability of Escherichia coli, (iv) disrupts the membrane integrity of S. aureus, and (v) denatures proteins at relatively high concentrations (>160 g/ ml). These results indicate that olanexidine probably binds to the cell membrane, disrupts membrane integrity, and its bacteriostatic and bactericidal effects are caused by irreversible leakage of intracellular components. At relatively high concentrations, olanexidine aggregates cells by denaturing proteins. This mechanism differs slightly from that of a similar biguanide compound, chlorhexidine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.