For biomedical application of nanoparticles, the surface chemical functionality is very important to impart additional functions, such as solubility and stability in a physiological environment, and targeting specificity as an imaging probe and a drug carrier. Although polyethylene glycol (PEG) has been used extensively, here, it is proposed that hyperbranched polyglycerol (PG) is a good or even better alternative to PEG. Superparamagnetic iron oxide nanoparticles (SPIONs) prepared using a polyol method are directly functionalized with PG through ring‐opening polymerization of glycidol. The resulting SPION‐PG is highly soluble in pure water (>40 mg mL−1) and in a phosphate buffer solution (>25 mg mL−1). Such high solubility enables separation of SPION‐PG according to size using size exclusion chromatography (SEC). The size‐separated SPION‐PG shows a gradual increase in transverse relaxivity (r2) with increasing particle size. For biological application, SPION‐PG is functionalized through multistep organic transformations (–OH → –OTs (tosylate) → –N3 → –RGD) including click chemistry as a key step to impart targeting specificity by immobilization of cyclic RGD peptide (Arg‐Gly‐Asp‐D‐Tyr‐Lys) on the surface. The targeting effect is demonstrated by the cell experiments; SPION‐PG‐RGD is taken up by the cells overexpressing αvβ3‐integrin such as U87MG and A549.
A nanodiamond-polyglycerol-gadolinium(ll) conjugate has been designed and prepared as novel nanodiamond-based magnetic resonance (MR) contrast agent dispersible in physiological media. Detonation nanodiamond (dND) was first grafted with polyglycerol (PG) through ring-opening polymerization of glycidol to impart dispersibility to dND in physiological media. Since the hydroxyl group in PG serves as a scaffold for further surface functionalization, diethylenetriaminepentaacetic acid (DTPA) was immobilized on the surface of dND-PG through multistep organic transformations and Gd(III) ion was complexed in the last step. The resulting dND-PG-Gd(III) exhibited good dispersibility (> 4.5 mg/mL) and stability (> 3 months) in phosphate buffered saline (PBS). In vitro MR evaluation indicates that water proton T1 relaxivity or r1 of dND-PG-Gd(III) in aqueous solutions is larger than that of Magnevist® and the difference in the relaxivity becomes larger under weaker magnetic fields. The good dispersibility together with relatively high T1 relaxivity makes dND-PG-Gd(III) a promising contrast agent for in vivo MR imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.