An association is discussed among a midlatitude storm track, a westerly polar-front jet stream and an underlying oceanic frontal zone. Their close association is observed when a subtropical jet stream is weak, as in the Southern Hemisphere summer or in the North Atlantic. Along a near-surface baroclinic zone that tends to be anchored around a frontal zone, storm track activity is enhanced within a well-defined polarfront jet with modest core velocity. This eddy-driven jet exhibits a deep structure with the strong surface westerlies maintained mainly through a poleward eddy heat flux. The westerly wind stress exerted along the frontal zone acts to maintain it by driving the oceanic current system, suggestive of a feedback loop via midlatitude atmosphere-ocean interaction. It is argued that the context of this feedback must be included in interpreting the tropospheric general circulation and its variability. In fact, decadalscale sea-surface temperature anomalies observed in the North Pacific subarctic frontal zone controlled the anomalous heat release to the atmosphere. Seemingly, the local storm track responded consistently to the decadal-scale shift of the frontal axis, acting to reinforce basin-scale flow anomalies. Over the North and South Pacific, the association is disturbed in winter by an intensified subtropical jet that traps eddy activity into its sharp core. The trapping impairs baroclinic interaction of upper-level eddies with the surface baroclinicity along a midlatitude oceanic front, leading to the suppression of eddy activity as observed in midwinter over the North Pacific.
Near-term climate predictions -which operate on annual to decadal timescales -offer benefits for climate adaptation and resilience, and are thus important for society. Although skilful near-term predictions are now possible, particularly when coupled models are initialized from the current climate state (most importantly from the ocean), several scientific challenges remain, including gaps in understanding and modelling the underlying physical mechanisms. This Perspective discusses how these challenges can be overcome, outlining concrete steps towards the provision of operational near-term climate predictions. Progress in this endeavour will bridge the gap between current seasonal forecasts and century-scale climate change projections, allowing a seamless climate service delivery chain to be established.
Editor’s note: For easy download the posted pdf of the State of the Climate for 2019 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
An extreme rainfall event occurred over western Japan and the adjacent Tokai region mainly in early July, named "the Heavy Rain Event of July 2018", which caused widespread havoc. It was followed by heat wave that persisted in many regions over Japan in setting the highest temperature on record since 1946 over eastern Japan as the July and summertime means. The rain event was attributable to two extremely moist airflows of tropical origins confluent persistently into western Japan and largescale ascent along the stationary Baiu front. The heat wave was attributable to the enhanced surface North Pacific Subtropical High and upper-tropospheric Tibetan High, with a prominent barotropic anticyclonic anomaly around the Korean Peninsula. The consecutive occurrence of these extreme events was related to persistent meandering of the upper-level subtropical jet, indicating remote influence from the upstream. The heat wave can also be influenced by enhanced summertime convective activity around the Philippines and possibly by extremely anomalous warmth over the Northern Hemisphere midlatitude in July 2018. The global warming can also influence not only the heat wave but also the rain event, consistent with a long-term increasing trend in intensity of extreme precipitation observed over Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.