Object. New approaches for understanding CSF motion in healthy individuals and patients with hydrocephalus and Chiari malformation are presented. The velocity and the pressure gradient of CSF motion were determined using phase contrast (PC) MRI.Methods. The authors examined 11 healthy control subjects and 2 patients (1 with hydrocephalus and 1 with Chiari malformation), using 4-dimensional PC (4D-PC) MRI and a newly developed computer analysis method that includes calculation of the pressure gradient from the velocity field. Sagittal slices including the center of the skull and coronal slices of the foramen of Monro and the third ventricle were used.Results. In the ventricular system, mixing and swirling of the CSF was observed in the third ventricle. The velocity images showed that the CSF was pushed up and back down to the adjacent ventricle and then returned again to the third ventricle. The CSF traveled bidirectionally in the foramen of Monro and sylvian aqueduct. Around the choroid plexus in the lateral ventricle, the CSF motion was stagnant and the CSF pressure gradient was lower than at the other locations. An elevated pressure gradient was observed in the basal cistern of the subarachnoid space. Sagittal imaging showed that the more prominent pressure gradients originated around the cisterna magna and were transmitted in an upward direction. The coronal image showed a pressure gradient traveling from the central to the peripheral subarachnoid spaces that diminished markedly in the convexity of the cerebrum. The 2 patients, 1 with secondary hydrocephalus and 1 with Chiari malformation, were also examined.Conclusions. The observed velocity and pressure gradient fields delineated the characteristics of the CSF motion and its similarities and differences among the healthy individuals and between them and the 2 patients. Although the present results did not provide general knowledge of CSF motion, the authors' method more comprehensively described the physiological properties of the CSF in the skull than conventional approaches that do not include measurements of pressure gradient fields.
Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.
The “cerebrospinal fluid (CSF) circulation theory” of CSF flowing unidirectionally and circulating through the ventricles and subarachnoid space in a downward or upward fashion has been widely recognized. In this review, observations of CSF motion using different magnetic resonance imaging (MRI) techniques are described, findings that are shared among these techniques are extracted, and CSF motion, as we currently understand it based on the results from the quantitative analysis of CSF motion, is discussed, along with a discussion of slower water molecule motion in the perivascular, paravascular, and brain parenchyma. Today, a shared consensus regarding CSF motion is being formed, as follows: CSF motion is not a circulatory flow, but a combination of various directions of flow in the ventricles and subarachnoid space, and the acceleration of CSF motion differs depending on the CSF space. It is now necessary to revise the currently held concept that CSF flows unidirectionally. Currently, water molecule motion in the order of centimeters per second can be detected with various MRI techniques. Thus, we need new MRI techniques with high-velocity sensitivity, such as in the order of 10 μm/s, to determine water molecule movement in the vessel wall, paravascular space, and brain parenchyma. In this paper, the authors review the previous and current concepts of CSF motion in the central nervous system using various MRI techniques.
Using the present sequence, we obtained images that accentuated CSF motion, which is largely composed of irregular motion. This method does not require pulse triggering or complex post-processing of images and allows visualization of CSF motion in a short period of time in selected whole imaging planes. It can therefore be applied clinically to diagnose various diseases that cause abnormalities in the CSF space.
Introduction We previously reported centripetal propagation of vasoconstriction at the time of thunderclap headache remission in patients with reversible cerebral vasoconstriction syndrome. Here we examine the clinical significance of centripetal propagation of vasoconstriction. Methods Participants comprised 48 patients who underwent magnetic resonance angiography within 72 h of reversible cerebral vasoconstriction syndrome onset and within 48 h of thunderclap headache remission. Results In 24 of the 48 patients (50%), centripetal propagation of vasoconstriction occurred on magnetic resonance angiography at the time of thunderclap headache remission. The interval from first to last thunderclap headache in patients with centripetal propagation of vasoconstriction (14 ± 10 days) was significantly longer than that of patients without centripetal propagation of vasoconstriction (4 ± 2 days). In the patients with centripetal propagation of vasoconstriction at the time of thunderclap headache remission, the incidence of another cerebral lesion (38%, 9 of 24 cases) was significantly higher than in patients without centripetal propagation of vasoconstriction (0%). From findings of sequential magnetic resonance angiography before and after thunderclap headache remission, we observed tendencies in which centripetal propagation of vasoconstriction gradually progressed after the onset of reversible cerebral vasoconstriction syndrome and peaked at the time of thunderclap headache remission. The progress of centripetal propagation of vasoconstriction concluded with thunderclap headache remission. Conclusions Centripetal propagation of vasoconstriction has clinical significance as an indicator of the severity of reversible cerebral vasoconstriction syndrome. The presence of centripetal propagation of vasoconstriction is associated with an increased risk of brain lesions and a longer interval from first to last thunderclap headache. Moreover, repeat magnetic resonance angiography to assess centripetal propagation of vasoconstriction during the time from onset to thunderclap headache remission can help diagnose reversible cerebral vasoconstriction syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.