Robots have the potential to facilitate the future education of all generations, particularly children. However, existing robots are limited in their ability to automatically perceive and respond to a human emotional states. We hypothesize that these sophisticated models suffer from individual differences in human personality. Therefore, we proposed a multi-characteristic model architecture that combines personalized machine learning models and utilizes the prediction score of each model. This architecture is formed with reference to an ensemble machine learning architecture. In this study, we presented a method for calculating the weighted average in a multi-characteristic architecture by using the similarities between a new sample and the trained characteristics. We estimated the degree of confidence during a communication as a human internal state. Empirical results demonstrate that using the multi-model training of each person’s information to account for individual differences provides improvements over a traditional machine learning system and insight into dealing with various individual differences.
In human-robot interaction, human mental states in dialogue have attracted attention to human-friendly robots that support educational use. Although estimating mental states using speech and visual information has been conducted, it is still challenging to estimate mental states more precisely in the educational scene. In this paper, we proposed a method to estimate human mental state based on participants’ eye gaze and head movement information. Estimated participants’ confidence levels in their answers to the miscellaneous knowledge question as a human mental state. The participants’ non-verbal information, such as eye gaze and head movements during dialog with a robot, were collected in our experiment using an eye-tracking device. Then we collect participants’ confidence levels and analyze the relationship between human mental state and non-verbal information. Furthermore, we also applied a machine learning technique to estimate participants’ confidence levels from extracted features of gaze and head movement information. As a result, the performance of a machine learning technique using gaze and head movements information achieved over 80 % accuracy in estimating confidence levels. Our research provides insight into developing a human-friendly robot considering human mental states in the dialogue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.