Leukoencephalopathies comprise a broad spectrum of disorders, but the genetic background of adult leukoencephalopathies has rarely been assessed. In this study, we analyzed 101 Japanese patients with genetically unresolved adult leukoencephalopathy using whole‐exome sequencing and repeat‐primed polymerase chain reaction for detecting GGC expansion in NOTCH2NLC. NOTCH2NLC was recently identified as the cause of neuronal intranuclear inclusion disease. We found 12 patients with GGC expansion in NOTCH2NLC as the most frequent cause of adult leukoencephalopathy followed by NOTCH3 variants in our cohort. Furthermore, we found 1 case with de novo GGC expansion, which might explain the underlying pathogenesis of sporadic cases. ANN NEUROL 2019;86:962–968
A 78-year-old woman in complete remission of mass-forming primary central nervous system lymphoma (PCNSL) showed diffuse leukoencephalopathy as well as corticospinal tract lesions with intense gadolinium enhancement on magnetic resonance imaging (MRI). She died 3 months later. In line with the MRI findings, pathological examination revealed dense infiltration of atypical lymphoid cells, consistent with a diagnosis of lymphomatosis cerebri (LC)-type PCNSL. This is the first report of LC in which the corticospinal tracts demonstrated robust contrast enhancement directly corresponding to the neuropathological findings, and it is also a rare instance in which LC presented as a recurrence of typical PCNSL.
Neuroinflammation by activated microglia and astrocytes plays a critical role in progression of amyotrophic lateral sclerosis (ALS). Interleukin-19 (IL-19) is a negative-feedback regulator that limits pro-inflammatory responses of microglia in an autocrine and paracrine manner, but it remains unclear how IL-19 contributes to ALS pathogenesis. We investigated the role of IL-19 in ALS using transgenic mice carrying human superoxide dismutase 1 with the G93A mutation (SOD1G93A Tg mice). We generated IL-19–deficient SOD1G93A Tg (IL-19−/−/SOD1G93A Tg) mice by crossing SOD1G93A Tg mice with IL-19−/− mice, and then evaluated disease progression, motor function, survival rate, and pathological and biochemical alternations in the resultant mice. In addition, we assessed the effect of IL-19 on glial cells using primary microglia and astrocyte cultures from the embryonic brains of SOD1G93A Tg mice and IL-19−/−/SOD1G93A Tg mice. Expression of IL-19 in primary microglia and lumbar spinal cord was higher in SOD1G93A Tg mice than in wild-type mice. Unexpectedly, IL-19−/−/SOD1G93A Tg mice exhibited significant improvement of motor function. Ablation of IL-19 in SOD1G93A Tg mice increased expression of both neurotoxic and neuroprotective factors, including tumor necrosis factor-α (TNF-α), IL-1β, glial cell line–derived neurotrophic factor (GDNF), and transforming growth factor β1, in lumbar spinal cord. Primary microglia and astrocytes from IL-19−/−/SOD1G93A Tg mice expressed higher levels of TNF-α, resulting in release of GDNF from astrocytes. Inhibition of IL-19 signaling may alleviate ALS symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.