Microminipigs are becoming increasingly attractive alternatives for various experimental applications, such as general toxicology studies, owing to their manageable size. However, there are limited studies on the male reproductive organs of microminipigs, particularly on the histological aspects of sexual maturity. To clarify the development of male reproductive organs, 35 male microminipigs, aged 0 to 12 months, were used in this study. Histological and histomorphological evaluation was performed based on spermatogenic development, measurement of tubular structure in testes and epididymides, and histological progress of accessory glands. In addition, spontaneous testicular changes were quantitatively assessed. Histologically, male microminipigs sexually matured around 4.5 months of age, when spermatogenesis in testes and structural development in genital organs were completed. Spontaneous testicular changes occurred in all the animals investigated. Multinucleated giant cell was most commonly observed, followed by hypospermatogenesis and tubular atrophy/hypoplasia. However, the number of affected tubules was less than 1% in testes after 4.5 months of age, suggesting that the influence of these changes on evaluation of toxicity studies may be minimal. It is preferable to use sexually mature animals in toxicology studies; therefore, the information obtained by the present study will be helpful for future toxicity evaluations in microminipigs.
Microminipigs have become an attractive animal model for toxicology and pharmacology studies and for human disease models, owing to their manageable size. Although there are numerous reports of spontaneous age-related lesions in mice, rats, dogs, and monkeys, those in minipigs are scarce. In the present study, spontaneous age-related histopathological changes were investigated using 37 microminipigs (20 males and 17 females) that were 6 months to 10 years of age. Abnormal deposits of materials were evident in several animals from 6 years of age, and these deposits included amyloid in the renal medulla, thyroid gland, and adrenal gland, hyaline droplets in glomeruli, and fibrillar inclusions in neurons. Arterial sclerosing changes (intimal thickening, intimal proliferation, and medial mineralization) and proliferative lesions (hyperplasia of hepatocytes, follicular cells, Leydig cells, and uterine endometrial glands) were present at 4 years of age and beyond. Renal adenoma, uterine leiomyoma, and Leydig cell tumor were observed in several microminipigs. Moreover, glomerulosclerosis, renal interstitial fibrosis, thymic involution, and adrenocortical cell vacuolation were common in aging microminipigs. Since knowledge of age-related changes is helpful for pathologists, the basic information obtained in this study will be a useful reference for all future toxicity evaluations in microminipigs.
The microminipig has considerable potential as an animal model to evaluate general toxicity; however, there are few studies on the male reproductive system, particularly regarding spermatogenesis. The objectives of the present study were to clarify the stages of the seminiferous epithelium cycle on the basis of spermiogenesis and to determine the duration of spermatogenesis in the microminipig. Eleven microminipigs from 6 to 9 months of age were used for histological analyses. Spermiogenesis and stages of the seminiferous epithelium cycle were classified according to the degree of acrosomal development as shown by the periodic acid-Schiff reaction. Three of the animals were intravenously injected with 5-bromo-2-deoxyuridine to determine the duration of spermatogenesis by immunohistochemistry. Spermiogenesis was classified into 15 steps according to the morphological development of the acrosome, nucleus, and flagellum. The seminiferous epithelium cycle was classified into 11 stages based on the steps of spermatid development and germ cell associations. The length of the seminiferous epithelium cycle and the overall spermatogenesis process in the microminipig were estimated to be approximately 9.1 and 40.9 days, respectively. The results indicate the potential application of the microminipig in the evaluation of testicular toxicity, such as spermatogenesis disruption, in general toxicity studies.
Pigs are considered a mixing vessel for the generation of novel pandemic influenza A viruses through reassortment because of their susceptibility to both avian and human influenza viruses. However, experiments to understand reassortment in pigs in detail have been limited because experiments with regular-sized pigs are difficult to perform. Miniature pigs have been used as an experimental animal model, but they are still large and require relatively large cages for housing. The microminipig is one of the smallest miniature pigs used for experiments. Introduced in 2010, microminipigs weigh around 10 kg at an early stage of maturity (6 to 7 months old) and are easy to handle. To evaluate the microminipig as an animal model for influenza A virus infection, we compared the receptor distribution of 10-week-old male pigs (Yorkshire Large White) and microminipigs. We found that both animals have SA␣2,3Gal and SA␣2,6Gal in their respiratory tracts, with similar distributions of both receptor types. We further found that the sensitivity of microminipigs to influenza A viruses was the same as that of larger miniature pigs. Our findings indicate that the microminipig could serve as a novel model animal for influenza A virus infection. IMPORTANCEThe microminipig is one of the smallest miniature pigs in the world and is used as an experimental animal model for life science research. In this study, we evaluated the microminipig as a novel animal model for influenza A virus infection. The distribution of influenza virus receptors in the respiratory tract of the microminipig was similar to that of the pig, and the sensitivity of microminipigs to influenza A viruses was the same as that of miniature pigs. Our findings suggest that microminipigs represent a novel animal model for influenza A virus infection.
The microminipig has become an increasingly attractive animal model for various experimental practices because of its manageable size; however, studies of the histological features of the female reproductive organs in microminipigs are limited. The present study investigates the sexual development of the reproductive organs and the cyclical changes during the estrous cycle in female microminipigs. The ovaries, oviducts, uteri, and vaginal tissues from 33 animals aged 0 to 26 months were utilized in this study. By evaluating the large tertiary follicles, corpora lutea, and the regressing corpora lutea, we estimated that female microminipigs reached puberty at approximately 5 months of age and sexual maturity at 8 months of age. The appearance of the follicles and corpora lutea in the ovaries, as well as the epithelium in other reproductive organs, was synchronized with each phase of the estrous cycle and was identical to that in common domestic pigs. In addition, several spontaneous findings were observed, including mesonephric duct remnants adjacent to oviducts and mineralization in ovaries. Understanding the normal histology of the reproductive organs in microminipigs is crucial for advancing pathological evaluations for future toxicological studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.