BackgroundIt remains unclear which cannulation method is best in cases of extracorporeal cardiopulmonary resuscitation (ECPR) for out-of-hospital cardiac arrest. We assessed the effect of ultrasound- and fluoroscopy-guided percutaneous cannulation on complication incidence, compared with that using only ultrasound guidance.MethodsThis single-center retrospective observational study was conducted between February 2011 and December 2015. In the comparison group, cannulation was performed percutaneously using only ultrasound guidance. In the exposure group, cannulation was performed percutaneously using fluoroscopy and ultrasound guidance. The primary outcome assessed was whether complications were associated with cannulation. The secondary outcome assessed was the duration from hospital arrival to extracorporeal circulation start. In addition to univariate analysis, multivariate logistic-regression analysis for cannulation complications was performed to adjust for several presumed confounders.ResultsOf the patients who underwent ECPR, 73 were eligible; the comparison group included 50 cases and the exposure group included 23 cases. Univariate analysis showed that the complication incidence of the exposure group was significantly lower than that of the comparison group (8.7 vs. 36.0%, p = 0.022). Duration from hospital arrival to extracorporeal circulation start was almost the same in both groups (median, 17.0 min vs. 17.0 min, p = 0.92). After multivariate logistic regression analysis, cannulation using fluoroscopy and ultrasound was independently associated with a lower complication incidence (adjusted odds ratio, 0.14; p = 0.024).ConclusionsUltrasound- and fluoroscopy-guided cannulation may reduce the complication incidence of cannulation without delaying extracorporeal circulation start.Electronic supplementary materialThe online version of this article (doi:10.1186/s12871-016-0293-z) contains supplementary material, which is available to authorized users.
BackgroundThe 2015 American Heart Association Guidelines for Cardiopulmonary Resuscitation recommend Basic Life Support (BLS) and Advanced Life Support (ALS) rules for termination of resuscitation (TOR). However, it is unclear whether the TOR rules are valid for out-of-hospital cardiac arrests (OHCAs) of both cardiac and non-cardiac etiologies. In this study, we validated the TOR rules for OHCA resulting from both etiologies.MethodsThis was a prospective multicenter observational study of OHCA patients transported to 67 emergency hospitals between January 2012 and March 2013 in the Kanto region of Japan. We calculated the specificity and positive predictive value (PPV) for neurologically unfavorable outcomes at one month in patients with OHCA of cardiac and non-cardiac etiologies.ResultsOf 11,505 eligible cases, 6,138 and 5,367 cases were of cardiac and non-cardiac etiology, respectively. BLS was performed on 2,818 and 2,606 patients with OHCA of cardiac and non-cardiac etiology, respectively. ALS was performed on 3,320 and 2,761 patients with OHCA of cardiac and non-cardiac etiology, respectively. The diagnostic accuracy of the TOR rules for predicting unfavorable outcomes in patients with OHCA of cardiac etiology who received BLS included a specificity of 0.985 (95 % confidence interval [CI]: 0.956–0.997) and a PPV of 0.999 (95 % CI: 0.996–1.000). In patients with OHCA from cardiac etiologies who received ALS, the TOR rules had a specificity of 0.963 (95 % CI: 0.896–0.992) and a PPV of 0.997 (95 % CI: 0.991–0.999). In patients with OHCA from non-cardiac etiologies who received BLS, the specificity was 0.915 (95 % CI: 0.796–0.976) and PPV was 0.998 (95 % CI: 0.995–0.999). For patients with OHCA from non-cardiac etiologies who received ALS, the specificity was 0.833 (95 % CI: 0.586–0.964) and PPV was 0.996 (95 % CI: 0.988–0.999).ConclusionsBoth TOR rules have high specificity and PPV in patients with OHCA from cardiac etiologies. For patients with OHCA from non-cardiac etiologies, the rules had a high PPV, but relatively low specificity. Therefore, TOR rules are useful in patients with OHCA from cardiac etiologies, but should be applied with caution to patients with OHCA from non-cardiac etiologies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-016-1226-4) contains supplementary material, which is available to authorized users.
BackgroundThe early prediction of neurological outcomes in postcardiac arrest patients treated with therapeutic hypothermia (TH) remains challenging. Amplitude-integrated electroencephalography (aEEG) is a type of quantitative EEG. A particular cutoff time from the return of spontaneous circulation (ROSC) to the recovery of a normal aEEG trace for predicting a good neurological outcome has not yet been established. The purpose of the present study was to examine the relation between neurological outcomes and the continuous normal voltage (CNV) recovery time in adult comatose survivors of cardiac arrest treated with TH and identify the recovery time cutoff for predicting a good neurological outcome.MethodsWe retrospectively evaluated adult survivors of cardiac arrest with initial shockable rhythm treated with TH and monitored with aEEG. A good outcome was defined as a cerebral performance category (CPC) of 1 or 2 at hospital discharge. A CNV trace was considered as the normal aEEG trace, and the CNV recovery time was defined as the time from ROSC to the initial CNV trace.ResultsThe study included 30 patients, and of these patients, 22 had recovery of CNV trace. The median CNV recovery time was shorter among patients with a good outcome than that among those with a poor outcome (10.7 h [interquartile range (IQR), 7.4–15.8 h] vs. 28.6 h [IQR, 26.9–29.3 h]; p = 0.003). The area under the receiver operating characteristic curve of the CNV recovery time for predicting a good neurological outcome was 0.95 (95 % CI 0.86–1; p = 0.003), and the optimal cutoff was 23 h. The recovery of CNV trace within 23 h had a sensitivity of 89 %, specificity of 100 %, positive predictive value of 100 %, and negative predictive value of 86 % for predicting a good neurological outcome in all the patients, including the eight patients without recovery of CNV trace.ConclusionsA CNV recovery time cutoff of 23 h might help predict a good neurological outcome in adult survivors of cardiac arrest treated with TH.
BackgroundThe duration of cardiopulmonary resuscitation (CPR) is an important factor associated with the outcomes for an out-of-hospital cardiac arrest. However, the appropriate CPR duration remains unclear considering pre- and in-hospital settings. The present study aimed to evaluate the relationship between the CPR duration (including both the pre- and in-hospital duration) and neurologically favorable outcomes 1-month after cardiac arrest.MethodsData were utilized from a prospective multi-center cohort study of out-of-hospital cardiac arrest patients transported to 67 emergency hospitals between January 2012 and March 2013 in the Kanto area of Japan. A total of 3,353 patients with out-of-hospital cardiac arrest (age ≥18 years) who underwent CPR by emergency medical service personnel and achieved the return of spontaneous circulation in a pre- or in-hospital setting were analyzed. The primary outcome was a 1-month favorable neurological outcome. Logistic regression analysis was performed to estimate the influence of cardiopulmonary resuscitation duration. The CPR duration that achieved a cumulative proportion >99% of cases with a 1-month neurologically favorable outcome was determined.ResultsOf the 3,353 eligible cases, pre-hospital return of spontaneous circulation was obtained in 1,692 cases (50.5%). A total of 279 (8.3%) cases had a 1-month neurologically favorable outcome. The CPR duration was significantly and inversely associated with 1-month neurologically favorable outcomes with adjustment for pre- and in-hospital confounders (adjusted odds ratio: 0.911, per minute, 95% CI: 0.892–0.929, p < 0.001). After 30 min of CPR, the probability of a 1-month neurologically favorable outcome decreased from 8.3 to 0.7%. At 45 min of CPR, the cumulative proportion for a 1-month neurologically favorable outcome reached >99%.ConclusionsThe CPR duration was independently and inversely associated with 1-month neurologically favorable outcomes after out-of-hospital cardiac arrest. The CPR duration required to achieve return of spontaneous circulation in >99% of out-of-hospital cardiac arrest patients with a 1-month favorable neurological outcome was 45 min, considering both pre- and in-hospital settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.