BackgroundDiagnosis of esophageal squamous cell carcinoma (SCC) may improve with early diagnosis. Currently it is difficult to diagnose SCC in the early stage because there is a limited number of tumor markers available.ResultsFifty-two esophageal SCC SEREX antigens were identified by SEREX (serological identification of antigens by recombinant cDNA expression cloning) using a cDNA phage library and sera of patients with esophageal SCC. Sequence analysis revealed that three of these antigens were similar in amino acid sequences, and they were designated as ECSA (esophageal carcinoma SEREX antigen)-1, -2 and -3. The ECSA family was also similar to an EST clone, hepatocellular carcinoma-associated antigen 25a (HCA25a). Serum antibody levels to ECSA-1, -2 and -3 were significantly higher in patients with esophageal SCC than in healthy donors. Based on the conserved amino acid sequences, three peptides were synthesized and used for enzyme-linked immunosorbent assays (ELISA). The serum antibody levels against one of these peptides were significantly higher in patients with esophageal SCC. This peptide sequence was also conserved in FAM119A, GOSR1 and BBS5, suggesting that these are also ECSA family members. Reverse transcription followed by quantitative PCR analysis showed that the mRNA expression levels of ECSA-1, -2 and -3 and FAM119A but not of HCA25a, GOSR1 and BBS5 were frequently elevated in esophageal SCC tissues.ConclusionsWe have identified a new gene family designated ECSA. Serum antibodies against the conserved domain of the ECSA family may be a promising tumor marker for esophageal SCC.
BackgroundEsophageal squamous cell carcinoma (SCC) represents one of the most malignant tumors. To improve the poor prognosis, it is necessary to diagnose esophageal SCC at early stages using new tumor markers. SEREX (serological identification of antigens by recombinant cDNA expression cloning) is suitable for large-scale screening of tumor antigens and has been applied for various types of human tumors.MethodsTumor markers of esophageal squamous cell carcinoma (SCC) were screened by SEREX method. The presence of serum anti-makorin 1 (MKRN1) antibodies (s-MKRN1-Abs) was examined by Western blotting using bacterially expressed MKRN1 protein. The expression levels of MKRN1 mRNA in tissues were examined by RT-PCR. The biological activity of MKRN1 was examined by transfection of ras-NIH3T3 mouse fibroblasts with MKRN1 cDNA. Major ubiquitinated proteins in MKRN1-transfected cells were identified by immunoprecipitation with anti-ubiquitin antibody followed by mass spectrometry.ResultsMKRN1 was identified as a novel SEREX antigen of esophageal SCC. Although a total of 18 (25%) of 73 patients with esophageal SCC had s-MKRN1-Abs, none of the 43 healthy donors had a detectable level of s-MKRN1-Abs. There was no correlation between the presence of s-MKRN1-Abs and clinicopathological variables other than histological grading. Well-differentiated tumors were associated significantly with the presence of s-MKRN1-Abs in the patients. The mRNA levels of MKRN1 were frequently higher in esophageal SCC tissues than in the peripheral normal esophageal mucosa. Stable transfection of ras-NIH3T3 cells with MKRN1 cDNA induced prominent morphological changes such as enlargement of the cell body and spreading. Ubiquitination of 80- and 82-kDa proteins were clearly observed in MKRN1-transfected cells but not in the parental cells, which were identified as L-FILIP (filamin A interacting protein 1).ConclusionMKRN1 is a novel SEREX antigen of esophageal SCC, and s-NKRN1-Abs can be a candidate of diagnostic markers of esophageal SCC with high specificity. It is plausible that MKRN1 is involved in carcinogenesis of the well-differentiated type of tumors possibly via ubiquitination of L-FILIP.
Background Acute ischemic stroke (AIS) is a serious cause of mortality and disability. AIS is a serious cause of mortality and disability. Early diagnosis of atherosclerosis, which is the major cause of AIS, allows therapeutic intervention before the onset, leading to prevention of AIS. Methods Serological identification by cDNA expression cDNA libraries and the protein array method were used for the screening of antigens recognized by serum IgG antibodies in patients with atherosclerosis. Recombinant proteins or synthetic peptides derived from candidate antigens were used as antigens to compare serum IgG levels between healthy donors (HDs) and patients with atherosclerosis-related disease using the amplified luminescent proximity homogeneous assay-linked immunosorbent assay. Results The first screening using the protein array method identified death-inducer obliterator 1 (DIDO1), forkhead box J2 (FOXJ2), and cleavage and polyadenylation specificity factor (CPSF2) as the target antigens of serum IgG antibodies in patients with AIS. Then, we prepared various antigens including glutathione S-transferase-fused DIDO1 protein as well as peptides of the amino acids 297–311 of DIDO1, 426–440 of FOXJ2, and 607–621 of CPSF2 to examine serum antibody levels. Compared with HDs, a significant increase in antibody levels of the DIDO1 protein and peptide in patients with AIS, transient ischemic attack (TIA), and chronic kidney disease (CKD) but not in those with acute myocardial infarction and diabetes mellitus (DM). Serum anti-FOXJ2 antibody levels were elevated in most patients with atherosclerosis-related diseases, whereas serum anti-CPSF2 antibody levels were associated with AIS, TIA, and DM. Receiver operating characteristic curves showed that serum DIDO1 antibody levels were highly associated with CKD, and correlation analysis revealed that serum anti-FOXJ2 antibody levels were associated with hypertension. A prospective case–control study on ischemic stroke verified that the serum antibody levels of the DIDO1 protein and DIDO1, FOXJ2, and CPSF2 peptides showed significantly higher odds ratios with a risk of AIS in patients with the highest quartile than in those with the lowest quartile, indicating that these antibody markers are useful as risk factors for AIS. Conclusions Serum antibody levels of DIDO1, FOXJ2, and CPSF2 are useful in predicting the onset of atherosclerosis-related AIS caused by kidney failure, hypertension, and DM, respectively.
This three-step method is not dependent on an operator's ability to proceed based on spatial awareness, but rather depends on logic. This method can prevent difficulties associated with a two-dimensional ultrasound view, and may be a safer technique compared with others. Further clinical trials are needed to establish the safety of this technique.
The present study was planned to identify novel serum antibody markers for digestive organ cancers. We have used screening by phage expression cloning and identified novel fourteen antigens in this experiment. The presence of auto-antibodies against these antigens in serum specimens was confirmed by western blotting. As for auto-antibodies against fourteen antigens, AlphaLISA (amplified luminescence proximity homogeneous assay) assay was performed in the sera of gastrointestinal cancers patients to confirm the results. Serum antibody levels against these fourteen recombinant proteins as antigens between healthy donors (HD) and esophageal squamous cell carcinoma (ESCC) patients, gastric cancer (GC), or colon cancer (CC) were compared. The serum levels of all fourteen auto-antibodies were significantly higher in ESCC and GC than those of HD. Among those auto-antibodies, except ECSA2 and CCNL2, were also detected significantly higher levels in CC than those of HD. Receiver operating curve (ROC) revealed similar results except CCNL2 in CC. AUC values calculated by ROC were higher than 0.7 in auto-antibodies against TPI1, HOOK2, PUF60, PRDX4, HS3ST1, TUBA1B, TACSTD2, AKR1C3, BAMBI, DCAF15 in ESCC, auto-antibodies against TPI1, HOOK2, PUF60, PRDX4, TACSTD2, AKR1C3, BAMBI, DCAF15 in GC, and auto-antibodies against TPI1, HOOK2, PUF60 in CC. AUC of the combination of HOOK2 and anti-p53 antibodies in ESCC was observed to be as high as 0.8228. Higher serum antibody levels against ten antigens could be potential diagnostic tool for ESCC. Higher serum antibody levels against eight antigens could be potential diagnostic tool for GC, and serum antibody levels against three antigens could be potential diagnostic tool for CC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.