Filoviruses cause lethal hemorrhagic disease in humans and nonhuman primates. An initial target of filovirus infection is the mononuclear phagocytic cell. Calcium-dependent (C-type) lectins such as dendritic cell-or liver/lymph node-specific ICAM-3 grabbing nonintegrin (DC-SIGN or L-SIGN, respectively), as well as the hepatic asialoglycoprotein receptor, bind to Ebola or Marburg virus glycoprotein (GP) and enhance the infectivity of these viruses in vitro. Here, we demonstrate that a recently identified human macrophage galactose-and N-acetylgalactosamine-specific C-type lectin (hMGL), whose ligand specificity differs from DC-SIGN and L-SIGN, also enhances the infectivity of filoviruses. This enhancement was substantially weaker for the Reston and Marburg viruses than for the highly pathogenic Zaire virus. We also show that the heavily glycosylated, mucin-like domain on the filovirus GP is required for efficient interaction with this lectin. Furthermore, hMGL, like DC-SIGN and L-SIGN, is present on cells known to be major targets of filoviruses (i.e., macrophages and dendritic cells), suggesting a role for these C-type lectins in viral replication in vivo. We propose that filoviruses use different C-type lectins to gain cellular entry, depending on the cell type, and promote efficient viral replication.
Big mitogen-activated protein (MAP) kinase (BMK1), a member of the mammalian MAP kinase family, is activated by growth factors. The activation of BMK1 is required for growth factor-induced cell proliferation and cell cycle progression. We have previously shown that BMK1 regulates c-jun gene expression through direct phosphorylation and activation of transcription factor MEF2C. MEF2C belongs to the myocyte enhancer factor 2 (MEF2) protein family, a four-membered family of transcription factors denoted MEF2A, -2B, -2C, and -2D. Here, we demonstrate that, in addition to MEF2C, BMK1 phosphorylates and activates MEF2A and MEF2D but not MEF2B. The blocking of BMK1 signaling inhibits the epidermal growth factor-dependent activation of these three MEF2 transcription factors. The sites phosphorylated by activated BMK1 were mapped to Ser-355, Thr-312, and Thr-319 of MEF2A and Ser-179 of MEF2D both in vitro and in vivo. Site-directed mutagenesis reveals that the phosphorylation of these sites in MEF2A and MEF2D are necessary for the induction of MEF2A and 2D transactivating activity by either BMK1 or by epidermal growth factor. Taken together, these data demonstrate that, upon growth factor induction, BMK1 directly phosphorylates and activates three members of the MEF2 family of transcription factors thereby inducing MEF2-dependent gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.