The aromatic polymer lignin protects plants from most forms of microbial attack. Despite the fact that a significant fraction of all lignocellulose degraded passes through arthropod guts, the fate of lignin in these systems is not known. Using tetramethylammonium hydroxide thermochemolysis, we show lignin degradation by two insect species, the Asian longhorned beetle (Anoplophora glabripennis) and the Pacific dampwood termite (Zootermopsis angusticollis). In both the beetle and termite, significant levels of propyl side-chain oxidation (depolymerization) and demethylation of ring methoxyl groups is detected; for the termite, ring hydroxylation is also observed. In addition, culture-independent fungal gut community analysis of A. glabripennis identified a single species of fungus in the Fusarium solani/Nectria haematococca species complex. This is a soft-rot fungus that may be contributing to wood degradation. These results transform our understanding of lignin degradation by wood-feeding insects.Asian longhorned beetle ͉ Pacific dampwood termite ͉ TMAH thermochemolysis ͉ Anoplophora glabripennis ͉ Zootermopsis angusticollis L ignin plays a central role in carbon cycling on Earth. Its heterogeneous structure imparts plants with structural rigidity and also serves to protect cellulose and hemicellulose from degradation (1). Most of what is known about lignin biodegradation is from pure culture studies with filamentous basidiomycete fungi, known as white-rot and brown-rot decay. Although both white-rot and brown-rot fungal degradation have been characterized, much more is known about the white-rot system (2, 3). White-rot fungi simultaneously degrade the three major components of the plant cell wall: lignin, cellulose, and hemicellulose. Analysis of white-rot-degraded wood shows that the reactions in lignin: (i) are oxidative, (ii) involve demethylation (or demethoxylation), (iii) include side-chain oxidation at C ␣ , and (iv) involve propyl side-chain cleavage between C ␣ and C  (Fig. 1) (4). In contrast to white-rot fungi, brown-rot fungi are able to circumvent the lignin barrier, removing the hemicellulose and cellulose with only minor modification to the lignin. Consequently, lignin remains a major component of the degraded plant cell wall (5). The remaining lignin is demethylated on aryl methoxy groups and contains a greater number of ring hydroxyl groups (6).Little is known about lignin degradation in complex ecosystems, such as insect guts, where a consortium of microbes may be involved in degradation rather than just a single species. Although cellulose degradation in insect guts is well documented (7,8), the fate of lignin has not clearly been demonstrated (9, 10), and it is widely accepted that insect gut systems do not have the capacity to degrade lignin (10). Although the majority of previous reports suggest that many wood-feeding insects overcome the lignin barrier by feeding on predegraded wood (11) or through exosymbiotic relationships with wood-degrading fungi (12, 13), there are species of insects...
Abundant waste agricultural residues such as oil palm empty fruit bunch (EFB) can provide alternative sources of biomass for producing furfural. The aims of this study were to propose a method of preparing furfural and dissolving pulp (DP) from EFB using prehydrolysis with nitric acid, and to examine how the prehydrolysate, which contains xylan, can be used for furfural production. The furfural yield in the nitric acid prehydrolysate was increased to 6.2% of the EFB material weight by dehydration with an acid catalyst. Nitric acid prehydrolysis followed by soda cooking under atmospheric pressure was also applied to the preparation of DP. The obtained pulp was then bleached by using peroxymonosulfuric acid (Psa), chlorine dioxide (D0, D1), and hydrogen peroxide (Ep) in the elementary chlorine-free Psa-D0-Ep-D1 sequence. The pulp demonstrated a brightness of 90.4% ISO and a viscosity of 6.5 cP, which met the National Standard of Indonesia, although the xylan content was a little high and the α-cellulose content was 83.0%.
High-molecular-weight polyphenols from oolong and black teas increased mitochondrial membrane potential, as measured by a method using ciliated protozoan Tetrahymena and rhodamine 123. These polyphenols, referred to as mitochondrial activation factors (MAFs), were purified from oolong and black teas by solvent extraction and Toyopearl column chromatography. The number-average molecular weights of the MAFs were 9,000 to 18,000, and the weight-average molecular weights were 15,000 to 25,000. The MAFs increased the mitochondrial membrane potential more than catechins did. Treatment of the MAFs with tannase indicated that they contained galloyl residues. When the MAFs were hydrolyzed with HCl-n-BuOH, cyanidin and delphinidin were detected. The partial structure of the MAFs was analyzed by pyrolysis-gas chromatography-mass spectrometry, and nine compounds were identified. These results suggest that MAFs are heterogeneous polymers of flavan-3-ols and flavan-3-ol gallates with intermonomeric linkages of B-ring to B-ring and C-ring to A-ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.