A genomic library of Bifidobacterium bifidum constructed in Escherichia coli was screened for the ability to hydrolyze the ␣-(132) linkage of 2-fucosyllactose, and a gene encoding 1,2-␣-L-fucosidase (AfcA) was isolated. The afcA gene was found to comprise 1,959 amino acid residues with a predicted molecular mass of 205 kDa and containing a signal peptide and a membrane anchor at the N and C termini, respectively. A domain responsible for fucosidase activity (the Fuc domain; amino acid residues 577 to 1474) was localized by deletion analysis and then purified as a hexahistidine-tagged protein. The recombinant Fuc domain specifically hydrolyzed the terminal ␣-(132)-fucosidic linkages of various oligosaccharides and a sugar chain of a glycoprotein. The stereochemical course of the hydrolysis of 2-fucosyllactose was determined to be inversion by using 1 H nuclear magnetic resonance. The primary structure of the Fuc domain exhibited no similarity to those of any glycoside hydrolases (GHs) but showed high similarity to those of several hypothetical proteins in a database. Thus, it was revealed that the AfcA protein constitutes a novel inverting GH family (GH family 95).␣-L-Fucosyl residues are frequently found at the nonreducing termini of various glycoconjugates, including blood group substances, milk oligosaccharides, gastric and submaxillary mucins, and serum glycoproteins (30, 37). The results of recent studies indicate that such terminal fucosyl residues attached by
We recently developed a Landrace line that is resistant to mycoplasmal pneumonia of swine (MPS) infection by genetic selection for five generations, and we reported that the immunophenotype of this line is different from that of the non-selected line in terms of changes in peripheral blood leukocyte population after MPS vaccination. This study followed up previous findings demonstrating changes in soluble factors in blood, namely, hormones, Mycoplasma hyopneumoniae-specific immunoglobulin G (IgG), and cytokines. These two lines were injected with MPS vaccine on days -7 and 0 after blood sampling on those days, and blood samples were collected on days -14, -7, 0, 2, 7 and 14. We found changes in the levels of many hormones and cytokines in both lines. However, we found that only growth hormone (GH) and interferon (IFN)-γ levels were statistically different between these two lines. GH concentration was reduced (day 0) and IFN-γ concentration was increased (day 14) in the MPS-selected line compared with the non-selected line, despite unchanged IFN-γ messenger RNA expression in blood cells. Although detailed mechanisms underlying these phenotypes remain unsolved, these traits would be useful to improve MPS resistance in pig production and provide an insight into MPS infection.
Mycoplasma pneumonia of swine (MPS) lung lesions and immunogenic properties were compared between a Landrace line that was genetically selected for reduced incidence of pulmonary MPS lesions, and a non-selected Landrace line. The MPS-selected Landrace line showed significantly lower degrees of pulmonary MPS lesions compared with the non-selected Landrace line. When changes in immunity before and after vaccination were compared, the percentage of B cells in the peripheral blood of the MPS-selected Landrace line was significantly lower than that of the non-selected line. Furthermore, the concentration of growth hormone and the mitogen activity of peripheral blood mononuclear cells in the MPS-selected Landrace line showed significantly (P < 0.05) lower increases after vaccination than the non-selected line. Conversely, the concentration of peripheral blood interferon (IFN)-γ and salivary immunoglobulin A (IgA) after Mycoplasma hyopneumoniae vaccination was significantly higher in the MPS-selected Landrace line than in the non-selected line. Gene expression of toll-like receptor (TLR)2 and TLR4 was significantly higher in the MPS-selected Landrace line in immune tissues, with the exception of the hilar lymph nodes. The present results suggest that peripheral blood IFN-γ, salivary IgA TLR2, and TLR4 are important immunological factors influencing the development of MPS lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.