Protective immunity against pathogens depends on the efficient generation of functionally diverse effector and memory T lymphocytes. However, whether plasticity during effector-to-memory CD8 T cell differentiation affects memory lineage specification and functional versatility remains unclear. Using genetic fate mapping analysis of highly cytotoxic KLRG1 effector CD8 T cells, we demonstrated that KLRG1 cells receiving intermediate amounts of activating and inflammatory signals downregulated KLRG1 during the contraction phase in a Bach2-dependent manner and differentiated into all memory T cell linages, including CXCR1 peripheral memory cells and tissue-resident memory cells. "ExKLRG1" memory cells retained high cytotoxic and proliferative capacity distinct from other populations, which contributed to effective anti-influenza and anti-tumor immunity. Our work demonstrates that developmental plasticity of KLRG1 effector CD8 T cells is important in promoting functionally versatile memory cells and long-term protective immunity.
Dendritic cells (DCs) are antigen-presenting cells specialized for activating T cells to elicit effector T-cell functions. Cross-presenting DCs are a DC subset capable of presenting antigens to CD8+ T cells and play critical roles in cytotoxic T-cell-mediated immune responses to microorganisms and cancer. Although their importance is known, the spatiotemporal dynamics of cross-presenting DCs in vivo are incompletely understood. Here, we study the T-cell zone in skin-draining lymph nodes (SDLNs) and find it is compartmentalized into regions for CD8 + T-cell activation by cross-presenting DCs that express the chemokine (C motif) receptor 1 gene, Xcr1 and for CD4 + T-cell activation by CD11b + DCs. Xcr1-expressing DCs in the SDLNs are composed of two different populations: migratory (CD103 hi ) DCs, which immigrate from the skin, and resident (CD8α hi ) DCs, which develop in the nodes. To characterize the dynamic interactions of these distinct DC populations with CD8 + T cells during their activation in vivo, we developed a photoconvertible reporter mouse strain, which permits us to distinctively visualize the migratory and resident subsets of Xcr1-expressing DCs. After leaving the skin, migratory DCs infiltrated to the deep T-cell zone of the SDLNs over 3 d, which corresponded to their half-life in the SDLNs. Intravital two-photon imaging showed that after soluble antigen immunization, the newly arriving migratory DCs more efficiently form sustained conjugates with antigen-specific CD8 + T cells than other Xcr1-expressing DCs in the SDLNs. These results offer in vivo evidence for differential contributions of migratory and resident cross-presenting DCs to CD8 + T-cell activation.dendritic cell | CD8 + T cell | cross-presentation | intravital two-photon imaging | photoconversion
In vivo immune response is triggered in the lymph node, where lymphocytes for entry into, retention at, and migration to effector sites are dynamically regulated. The molecular mechanism underlying retention regulation is the key to elucidating in vivo regulation of immune response. In this study, we describe the function of the adhesion molecule class I-restricted T cell-associated molecule (CRTAM) in regulating CD8+ T cell retention within the lymph node and eventually effector function. We previously identified CRTAM as a receptor predominantly expressed on activated CD8+ T cells, and nectin-like molecule-2 (Necl2) as its ligand. In vivo function of CRTAM-Necl2 interaction was analyzed by generating CRTAM−/− mice. CRTAM−/− mice exhibited reduced protective immunity against viral infection and impaired autoimmune diabetes induction in vivo. Although Ag-specific CRTAM−/− CD8+ T cells showed normal CTL functions in vitro, their number in the draining lymph node was reduced. Because CRTAM+ T cells bound efficiently to Necl2-expressing CD8+ dendritic cells (DCs) that reside in T cell area of lymph node, CRTAM may induce retention by binding to CD8+ DCs at the late stage of activation before proliferation. The CRTAM-mediated late interaction with DCs induced retention of activated CD8+ T cells in an Ag-independent fashion, and this possibly resulted in effective CTL development in the draining lymph node.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.