The proteome provides unique insights into biology and disease beyond the genome and transcriptome. Lack of large proteomic datasets has restricted identification of new cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types were analyzed by mass spectrometry. Deploying a clinically-relevant workflow to quantify 8,498 proteins, these data capture evidence of cell type and post-transcriptional modifications. Integrating multi-omics, drug response and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipeline revealed thousands of protein-specific biomarkers of cancer vulnerabilities. Proteomic data had greater power to predict drug response than the equivalent portion of the transcriptome. Further, random downsampling to only 1,500 proteins had limited impact on predictive power, consistent with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-DepMapSanger), available at https://cellmodelpassports.sanger.ac.uk, is a comprehensive resource revealing principles of protein regulation with important implications for future clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.